• Anti–PD-L1 blockade significantly improves the efficacy of nilotinib against BCR-ABL+ B-ALL in a CD4+ T-cell–dependent manner.

  • Anti–PD-L1 clonally expands leukemia-specific CD4+ T cells with a helper/cytotoxic phenotype and reduced expression of exhaustion markers.

Patients with acute lymphoblastic leukemia have experienced significantly improved outcomes due to the advent of chimeric antigen receptor (CAR) T cells and bispecific T-cell engagers, although a proportion of patients still relapse despite these advances. T-cell exhaustion has been recently suggested to be an important driver of relapse in these patients. Indeed, phenotypic exhaustion of CD4+ T cells is predictive of relapse and poor overall survival in B-cell acute lymphoblastic leukemia (B-ALL). Thus, therapies that counter T-cell exhaustion, such as immune checkpoint blockade, may improve leukemia immunosurveillance and prevent relapse. Here, we used a murine model of Ph+ B-ALL as well as human bone marrow biopsy samples to assess the fundamental nature of CD4+ T-cell exhaustion and the preclinical therapeutic potential for combining anti–PD-L1 based checkpoint blockade with tyrosine kinase inhibitors targeting the BCR-ABL oncoprotein. Single-cell RNA-sequence analysis revealed that B-ALL induces a unique subset of CD4+ T cells with both cytotoxic and helper functions. Combination treatment with the tyrosine kinase inhibitor nilotinib and anti–PD-L1 dramatically improves long-term survival of leukemic mice. Depletion of CD4+ T cells prior to therapy completely abrogates the survival benefit, implicating CD4+ T cells as key drivers of the protective anti-leukemia immune response. Indeed, treatment with anti–PD-L1 leads to clonal expansion of leukemia-specific CD4+ T cells with the aforementioned helper/cytotoxic phenotype as well as reduced expression of exhaustion markers. These findings support efforts to use PD1/PD-L1 checkpoint blockade in clinical trials and highlight the importance of CD4+ T-cell dysfunction in limiting the endogenous anti-leukemia response.

1.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
DC
, et al;
ICGC PedBrain
.
Signatures of mutational processes in human cancer
.
Nature.
2013
;
500
(
7463
):
415
-
421
.
2.
Zamora
AE
,
Crawford
JC
,
Allen
EK
, et al
.
Pediatric patients with acute lymphoblastic leukemia generate abundant and functional neoantigen-specific CD8+ T cell responses
.
Sci Transl Med.
2019
;
11
(
498
):
eaat8549
.
3.
Blaeschke
F
,
Willier
S
,
Stenger
D
, et al
.
Leukemia-induced dysfunctional TIM-3+CD4+ bone marrow T cells increase risk of relapse in pediatric B-precursor ALL patients
.
Leukemia.
2020
;
34
(
10
):
2607
-
2620
.
4.
Hohtari
H
,
Brück
O
,
Blom
S
, et al
.
Immune cell constitution in bone marrow microenvironment predicts outcome in adult ALL
.
Leukemia.
2019
;
33
(
7
):
1570
-
1582
.
5.
Liu
L
,
Chang
YJ
,
Xu
LP
, et al
.
T cell exhaustion characterized by compromised MHC class I and II restricted cytotoxic activity associates with acute B lymphoblastic leukemia relapse after allogeneic hematopoietic stem cell transplantation
.
Clin Immunol.
2018
;
190
:
32
-
40
.
6.
Manlove
LS
,
Berquam-Vrieze
KE
,
Pauken
KE
,
Williams
RT
,
Jenkins
MK
,
Farrar
MA
.
Adaptive immunity to leukemia is inhibited by cross-reactive induced regulatory T cells
.
J Immunol.
2015
;
195
(
8
):
4028
-
4037
.
7.
Kang
SH
,
Hwang
HJ
,
Yoo
JW
, et al
.
Expression of immune checkpoint receptors on T-cells and their ligands on leukemia blasts in childhood acute leukemia
.
Anticancer Res.
2019
;
39
(
10
):
5531
-
5539
.
8.
Manlove
LS
,
Schenkel
JM
,
Manlove
KR
, et al
.
Heterologous vaccination and checkpoint blockade synergize to induce antileukemia immunity
.
J Immunol.
2016
;
196
(
11
):
4793
-
4804
.
9.
Heltemes-Harris
LM
,
Hubbard
GK
,
LaRue
RS
, et al
.
Identification of mutations that cooperate with defects in B cell transcription factors to initiate leukemia
.
Oncogene.
2021
;
40
(
43
):
6166
-
6179
.
10.
Boulos
N
,
Mulder
HL
,
Calabrese
CR
, et al
.
Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia
.
Blood.
2011
;
117
(
13
):
3585
-
3595
.
11.
McSorley
SJ
,
Asch
S
,
Costalonga
M
,
Reinhardt
RL
,
Jenkins
MK
.
Tracking salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection
.
Immunity.
2002
;
16
(
3
):
365
-
377
.
12.
Qin
H
,
Ishii
K
,
Nguyen
S
, et al
.
Murine pre-B-cell ALL induces T-cell dysfunction not fully reversed by introduction of a chimeric antigen receptor
.
Blood.
2018
;
132
(
18
):
1899
-
1910
.
13.
Elyahu
Y
,
Hekselman
I
,
Eizenberg-Magar
I
, et al
.
Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes
.
Sci Adv.
2019
;
5
(
8
):
eaaw8330
.
14.
Ciucci
T
,
Vacchio
MS
,
Gao
Y
, et al
.
The emergence and functional fitness of memory CD4+ T cells require the transcription factor Thpok
.
Immunity.
2019
;
50
(
1
):
91
-
105.e4
.
15.
Cano-Gamez
E
,
Soskic
B
,
Roumeliotis
TI
, et al
.
Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines
.
Nat Commun.
2020
;
11
(
1
):
1801
.
16.
Miragaia
RJ
,
Gomes
T
,
Chomka
A
, et al
.
Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation
.
Immunity.
2019
;
50
(
2
):
493
-
504.e7
.
17.
Baldwin
TA
,
Sandau
MM
,
Jameson
SC
,
Hogquist
KA
.
The timing of TCR alpha expression critically influences T cell development and selection
.
J Exp Med.
2005
;
202
(
1
):
111
-
121
.
18.
Schietinger
A
,
Philip
M
,
Krisnawan
VE
, et al
.
Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis
.
Immunity.
2016
;
45
(
2
):
389
-
401
.
19.
Beltra
JC
,
Manne
S
,
Abdel-Hakeem
MS
, et al
.
Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms
.
Immunity.
2020
;
52
(
5
):
825
-
841.e8
.
20.
Chen
X
,
MacNabb
BW
,
Flood
B
,
Blazar
BR
,
Kline
J
.
Divergent fates of antigen-specific CD8+ T cell clones in mice with acute leukemia
.
Cell Rep.
2021
;
37
(
6
):
109991
.
21.
Melenhorst
JJ
,
Chen
GM
,
Wang
M
, et al
.
Decade-long leukaemia remissions with persistence of CD4+ CAR T cells
.
Nature.
2022
;
602
(
7897
):
503
-
509
.
22.
Utzschneider
DT
,
Charmoy
M
,
Chennupati
V
, et al
.
T cell factor 1-expressing memory-like CD8(+) T cells sustain the immune response to chronic viral infections
.
Immunity.
2016
;
45
(
2
):
415
-
427
.
23.
Wu
T
,
Ji
Y
,
Moseman
EA
, et al
.
The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness
.
Sci Immunol.
2016
;
1
(
6
):
eaai8593
.
24.
Khan
O
,
Giles
JR
,
McDonald
S
, et al
.
TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion
.
Nature.
2019
;
571
(
7764
):
211
-
218
.
25.
Scott
AC
,
Dündar
F
,
Zumbo
P
, et al
.
TOX is a critical regulator of tumour-specific T cell differentiation
.
Nature.
2019
;
571
(
7764
):
270
-
274
.
26.
Tay
RE
,
Richardson
EK
,
Toh
HC
.
Revisiting the role of CD4+ T cells in cancer immunotherapy: new insights into old paradigms
.
Cancer Gene Ther.
2021
;
28
(
1-2
):
5
-
17
.
27.
Cachot
A
,
Bilous
M
,
Liu
YC
, et al
.
Tumor-specific cytolytic CD4 T cells mediate immunity against human cancer
.
Sci Adv.
2021
;
7
(
9
):
eabe3348
.
28.
Oh
DY
,
Kwek
SS
,
Raju
SS
, et al
.
Intratumoral CD4
.
Cell.
2020
;
181
(
7
):
1612
-
1625.e1613
.
29.
Porakishvili
N
,
Kardava
L
,
Jewell
AP
, et al
.
Cytotoxic CD4+ T cells in patients with B cell chronic lymphocytic leukemia kill via a perforin-mediated pathway
.
Haematologica.
2004
;
89
(
4
):
435
-
443
.
30.
Patil
VS
,
Madrigal
A
,
Schmiedel
BJ
, et al
.
Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis
.
Sci Immunol.
2018
;
3
(
19
):
eaan8664
.
31.
Yost
KE
,
Satpathy
AT
,
Wells
DK
, et al
.
Clonal replacement of tumor-specific T cells following PD-1 blockade
.
Nat Med.
2019
;
25
(
8
):
1251
-
1259
.
32.
Foà
R
,
Bassan
R
,
Vitale
A
, et al;
GIMEMA Investigators
.
Dasatinib-blinatumomab for Ph-positive acute lymphoblastic leukemia in adults
.
N Engl J Med.
2020
;
383
(
17
):
1613
-
1623
.
33.
Mestermann
K
,
Giavridis
T
,
Weber
J
, et al
.
The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells
.
Sci Transl Med.
2019
;
11
(
499
):
eaau5907
.
34.
Zhang
H
,
Hu
Y
,
Shao
M
, et al
.
Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion
.
J Hematol Oncol.
2021
;
14
(
1
):
113
.
35.
Weichsel
R
,
Dix
C
,
Wooldridge
L
, et al
.
Profound inhibition of antigen-specific T-cell effector functions by dasatinib
.
Clin Cancer Res.
2008
;
14
(
8
):
2484
-
2491
.
36.
Lee
KC
,
Ouwehand
I
,
Giannini
AL
,
Thomas
NS
,
Dibb
NJ
,
Bijlmakers
MJ
.
Lck is a key target of imatinib and dasatinib in T-cell activation
.
Leukemia.
2010
;
24
(
4
):
896
-
900
.
37.
Kreutzman
A
,
Ilander
M
,
Porkka
K
,
Vakkila
J
,
Mustjoki
S
.
Dasatinib promotes Th1-type responses in granzyme B expressing T-cells
.
OncoImmunology.
2014
;
3
(
5
):
e28925
.
38.
Colom-Fernández
B
,
Kreutzman
A
,
Marcos-Jiménez
A
, et al
.
Immediate effects of dasatinib on the migration and redistribution of naïve and memory lymphocytes associated with lymphocytosis in chronic myeloid leukemia patients
.
Front Pharmacol.
2019
;
10
:
1340
.
39.
Koller
P
,
Harutyunyan
K
,
Cavazos
A
, et al
.
Dasatinib increases MHCII surface levels and can synergize with anti-PD1 therapy to increase the anti-tumor effect in a pre-clinical Philadelphia chromosome positive acute lymphoblastic leukemia model
[abstract].
Blood.
2020
;
136
(
suppl 1
). Abstract
44
.
40.
Okada
M
,
Adachi
S
,
Imai
T
, et al
.
A novel mechanism for imatinib mesylate-induced cell death of BCR-ABL-positive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity
.
Blood.
2004
;
103
(
6
):
2299
-
2307
.
41.
Cassaday
RD
,
Garcia
KA
,
Fromm
JR
, et al
.
Phase 2 study of pembrolizumab for measurable residual disease in adults with acute lymphoblastic leukemia
.
Blood Adv.
2020
;
4
(
14
):
3239
-
3245
.
42.
Webster
J
,
Luskin
MR
,
Prince
GT
, et al
.
Blinatumomab in combination with immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patients with relapsed/refractory (R/R) CD19 positive B-cell acute lymphoblastic leukemia (ALL): preliminary results of a phase I study
[abstract].
Blood.
2018
;
132
(
suppl 1
). Abstract
557
.
You do not currently have access to this content.

Sign in via your Institution