• High-throughput drug screening identified gilteritinib and venetoclax as a highly synergistic drug combination in FLT3 wild-type AML.

  • Gilteritinib-venetoclax suppressed MCL-1 and decreased venetoclax-azacitidine–resistant FLT3 wild-type AML viability in vitro and in vivo.

BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine–resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.

1.
Nagel
G
,
Weber
D
,
Fromm
E
, et al;
German-Austrian AML Study Group (AMLSG)
.
Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO)
.
Ann Hematol
.
2017
;
96
(
12
):
1993
-
2003
.
2.
Boddu
P
,
Kantarjian
H
,
Garcia-Manero
G
, et al
.
Time to response and survival in hypomethylating agent-treated acute myeloid leukemia
.
Leuk Lymphoma
.
2018
;
59
(
4
):
1012
-
1015
.
3.
Kantarjian
HM
,
Thomas
XG
,
Dmoszynska
A
, et al
.
Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia
.
J Clin Oncol
.
2012
;
30
(
21
):
2670
-
2677
.
4.
Wei
AH
,
Strickland
SA
,
Hou
J.-Z.
, et al
.
Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study
.
J Clin Oncol
.
2019
;
37
(
15
):
1277
-
1284
.
5.
DiNardo
CD
,
Pratz
K
,
Pullarkat
V
, et al
.
Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia
.
Blood
.
2019
;
133
(
1
):
7
-
17
.
6.
DiNardo
CD
,
Pratz
KW
,
Letai
A
, et al
.
Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study
.
Lancet Oncol
.
2018
;
19
(
2
):
216
-
228
.
7.
Guièze
R
,
Liu
VM
,
Rosebrock
D
, et al
.
Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies
.
Cancer Cell
.
2019
;
36
(
4
):
369
-
384.e13
.
8.
Jones
CL
,
Stevens
BM
,
D’Alessandro
A
, et al
.
Inhibition of amino acid metabolism selectively targets human leukemia stem cells
.
Cancer Cell
.
2019
;
35
(
2
):
333
-
335
.
9.
Konopleva
M
,
Pollyea
DA
,
Potluri
J
, et al
.
Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia
.
Cancer Discov
.
2016
;
6
(
10
):
1106
-
1117
.
10.
Pan
R
,
Hogdal
LJ
,
Benito
JM
, et al
.
Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia
.
Cancer Discov
.
2014
;
4
(
3
):
362
-
375
.
11.
Pei
S
,
Pollyea
DA
,
Gustafson
A
, et al
.
Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia
.
Cancer Discov
.
2020
;
10
(
4
):
536
-
551
.
12.
Wei
AH
,
Roberts
AW
,
Spencer
A
, et al
.
Targeting MCL-1 in hematologic malignancies: rationale and progress
.
Blood Rev
.
2020
;
44
:
100672
.
13.
Liu
F.
,
Kalpage
HA
,
Wang
D
, et al
.
Cotargeting of mitochondrial complex I and Bcl-2 shows antileukemic activity against acute myeloid leukemia cells reliant on oxidative phosphorylation
.
Cancers (Basel)
.
2020
;
12
(
9
):
2400
.
14.
Bhatt
S
,
Pioso
MS
,
Olesinski
EA
, et al
.
Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia
.
Cancer Cell
.
2020
;
38
(
6
):
872
-
890.e6
.
15.
Dietrich
S
,
Oleś
M
,
Lu
J
, et al
.
Drug-perturbation-based stratification of blood cancer
.
J Clin Invest
.
2018
;
128
(
1
):
427
-
445
.
16.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
17.
Pabst
C
,
Bergeron
A
,
Lavallée
V.-P.
, et al
.
GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo
.
Blood
.
2016
;
127
(
16
):
2018
-
2027
.
18.
Vick
B
,
Rothenberg
M
,
Sandhöfer
N
, et al
.
An advanced preclinical mouse model for acute myeloid leukemia using patients’ cells of various genetic subgroups and in vivo bioluminescence imaging
.
PLoS One
.
2015
;
10
(
3
):
e0120925
.
19.
Bliss
CI
.
The toxicity of poisons applied jointly
.
Ann Appl Biol
.
1939
;
26
(
3
):
585
-
615
.
20.
Yadav
B
,
Wennerberg
K
,
Aittokallio
T
,
Tang
J
.
Searching for drug synergy in complex dose-response landscapes using an interaction potency model
.
Comput Struct Biotechnol J
.
2015
;
13
:
504
-
513
.
21.
Zheng
S
,
Wang
W
,
Aldahdooh
J
, et al
.
SynergyFinder Plus: towards a better interpretation and annotation of drug combination screening datasets
.
bioRxiv
.
Preprint posted on 3 June 2021
.
22.
Lin
KH
,
Winter
PS
,
Xie
A
, et al
.
Targeting MCL-1/BCL-XL forestalls the acquisition of resistance to ABT-199 in acute myeloid leukemia
.
Sci Rep
.
2016
;
6
:
27696
.
23.
Fiskus
W
,
Cai
T
,
DiNardo
CD
, et al
.
Superior efficacy of cotreatment with BET protein inhibitor and BCL2 or MCL1 inhibitor against AML blast progenitor cells
.
Blood Cancer J
.
2019
;
9
(
2
):
4
.
24.
DiNardo
CD
,
Tiong
IS
,
Quaglieri
A
, et al
.
Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML
.
Blood
.
2020
;
135
(
11
):
791
-
803
.
25.
European Medicines Agency
.
Xospata product information
. Accessed 22 March 2022. https://www.ema.europa.eu/en/medicines/human/EPAR/xospata.
26.
Mizuki
M
,
Fenski
R
,
Halfter
H
, et al
.
Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways
.
Blood
.
2000
;
96
(
12
):
3907
-
3914
.
27.
Wu
X
,
Luo
Q
,
Liu
Z
.
Ubiquitination and deubiquitination of MCL1 in cancer: deciphering chemoresistance mechanisms and providing potential therapeutic options
.
Cell Death Dis
.
2020
;
11
(
7
):
556
.
28.
Senichkin
VV
,
Streletskaia
AY
,
Gorbunova
AS
,
Zhivotovsky
B
,
Kopeina
GS
.
Saga of Mcl-1: regulation from transcription to degradation
.
Cell Death Differ
.
2020
;
27
(
2
):
405
-
419
.
29.
Pan
R
,
Ruvolo
V
,
Mu
H
, et al
.
Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy
.
Cancer Cell
.
2017
;
32
(
6
):
748
-
760.e6
.
30.
Maiti
A
,
Rausch
CR
,
Cortes
JE
, et al
.
Outcomes of relapsed or refractory acute myeloid leukemia after frontline hypomethylating agent and venetoclax regimens
.
Haematologica
.
2021
;
106
(
3
):
894
-
898
.
31.
Brinton
LT
,
Zhang
P
,
Williams
K
, et al
.
Synergistic effect of BCL2 and FLT3 co-inhibition in acute myeloid leukemia
.
J Hematol Oncol
.
2020
;
13
(
1
):
139
.
32.
Ma
J
,
Zhao
S
,
Qiao
X
, et al
.
Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid leukemia
.
Clin Cancer Res
.
2019
;
25
(
22
):
6815
-
6826
.
33.
Mali
RS
,
Zhang
Q
,
DeFilippis
R
, et al
.
Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models
.
Haematologica
.
2021
;
106
(
4
):
1034
-
1046
.
34.
Perl
AE
,
Altman
JK
,
Cortes
J
, et al
.
Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study
.
Lancet Oncol
.
2017
;
18
(
8
):
1061
-
1075
.
35.
Perl
AE
,
Martinelli
G
,
Cortes
JE
, et al
.
Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML
.
N Engl J Med
.
2019
;
381
(
18
):
1728
-
1740
.
36.
Zheng
R
,
Levis
M
,
Piloto
O
, et al
.
FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells
.
Blood
.
2004
;
103
(
1
):
267
-
274
.
37.
Orlova
A
,
Neubauer
HA
,
Moriggl
R
.
The stromal microenvironment provides an escape route from FLT3 inhibitors through the GAS6-AXL-STAT5 axis
.
Haematologica
.
2019
;
104
(
10
):
1907
-
1909
.
38.
Niu
X
,
Rothe
K
,
Chen
M
, et al
.
Targeting AXL kinase sensitizes leukemic stem and progenitor cells to venetoclax treatment in acute myeloid leukemia
.
Blood
.
2021
;
137
(
26
):
3641
-
3655
.
39.
Yoshimoto
G
,
Miyamoto
T
,
Jabbarzadeh-Tabrizi
S
, et al
.
FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD- specific STAT5 activation
.
Blood
.
2009
;
114
(
24
):
5034
-
5043
.
40.
Kasper
S
,
Breitenbuecher
F
,
Heidel
F
, et al
.
Targeting MCL-1 sensitizes FLT3-ITD- positive leukemias to cytotoxic therapies
.
Blood Cancer J
.
2012
;
2
(
3
):
e60
.
41.
Ghosh
AK
,
Secreto
C
,
Boysen
J
, et al
.
The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy
.
Blood
.
2011
;
117
(
6
):
1928
-
1937
.
42.
Carter
JL
,
Hege
K
,
Yang
J
, et al
.
Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy
.
Signal Transduct Target Ther
.
2020
;
5
(
1
):
288
.
You do not currently have access to this content.
Sign in via your Institution