• Donor NK cells trigger recipient dendritic cells to synthesize B2M, which stimulates cKIT-L and interleukin-7 production.

  • Adoptive transfer of ex vivo–expanded donor alloreactive NK cells accelerates post–bone marrow transplant immune reconstitution.

Allogeneic hematopoietic transplantation is a powerful treatment for hematologic malignancies. Posttransplant immune incompetence exposes patients to disease relapse and infections. We previously demonstrated that donor alloreactive natural killer (NK) cells ablate recipient hematopoietic targets, including leukemia. Here, in murine models, we show that infusion of donor alloreactive NK cells triggers recipient dendritic cells (DCs) to synthesize β-2-microglobulin (B2M) that elicits the release of c-KIT ligand and interleukin-7 that greatly accelerate posttransplant immune reconstitution. An identical chain of events was reproduced by infusing supernatants of alloreactive NK/DC cocultures. Similarly, human alloreactive NK cells triggered human DCs to synthesize B2M that induced interleukin-7 production by thymic epithelial cells and thereby supported thymocyte cellularity in vitro. Chromatography fractionation of murine and human alloreactive NK/DC coculture supernatants identified a protein with molecular weight and isoelectric point of B2M, and mass spectrometry identified amino acid sequences specific of B2M. Anti-B2M antibody depletion of NK/DC coculture supernatants abrogated their immune-rebuilding effect. B2M knock-out mice were unable to undergo accelerated immune reconstitution, but infusion of (wild-type) NK/DC coculture supernatants restored their ability to undergo accelerated immune reconstitution. Similarly, silencing the B2M gene in human DCs, before coculture with alloreactive NK cells, prevented the increase in thymocyte cellularity in vitro. Finally, human recombinant B2M increased thymocyte cellularity in a thymic epithelial cells/thymocyte culture system. Our studies uncover a novel therapeutic principle for treating posttransplant immune incompetence and suggest that, upon its translation to the clinic, patients may benefit from adoptive transfer of large numbers of cytokine-activated, ex vivo–expanded donor alloreactive NK cells.

1.
Anasetti
C
,
Aversa
F
,
Velardi
A
. Hematopoietic cell transplantation from human leukocyte antigen partially matched related donors. . In:
Appelbaum
FR
,
Forman
SJ
,
Negrin
RS
,
Blume
KG
, eds.
Thomas’ Hematopoietic Cell Transplantation
. 4th ed..
Oxford, United Kingdom
:
Wiley-Blackwell
;
2009
:
657
-
674
.
2.
Mancusi
A
,
Ruggeri
L
,
Velardi
A
.
Haploidentical hematopoietic transplantation for the cure of leukemia: from its biology to clinical translation
.
Blood
.
2016
;
128
(
23
):
2616
-
2623
.
3.
Aversa
F
,
Tabilio
A
,
Velardi
A
, et al
.
Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype
.
N Engl J Med
.
1998
;
339
(
17
):
1186
-
1193
.
4.
Ruggeri
L
,
Capanni
M
,
Urbani
E
, et al
.
Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants
.
Science
.
2002
;
295
(
5562
):
2097
-
2100
.
5.
Kärre
K
.
Immunology. A perfect mismatch
.
Science
.
2002
;
295
(
5562
):
2029
-
2031
.
6.
Ciccone
E
,
Pende
D
,
Viale
O
, et al
.
Evidence of a natural killer (NK) cell repertoire for (allo) antigen recognition: definition of five distinct NK-determined allospecificities in humans
.
J Exp Med
.
1992
;
175
(
3
):
709
-
718
.
7.
Colonna
M
,
Brooks
EG
,
Falco
M
,
Ferrara
GB
,
Strominger
JL
.
Generation of allospecific natural killer cells by stimulation across a polymorphism of HLA-C
.
Science
.
1993
;
260
(
5111
):
1121
-
1124
.
8.
Uhrberg
M
,
Valiante
NM
,
Shum
BP
, et al
.
Human diversity in killer cell inhibitory receptor genes
.
Immunity
.
1997
;
7
(
6
):
753
-
763
.
9.
Moretta
L
,
Moretta
A
.
Unravelling natural killer cell function: triggering and inhibitory human NK receptors
.
EMBO J
.
2004
;
23
(
2
):
255
-
259
.
10.
Parham
P
.
MHC class I molecules and KIRs in human history, health and survival
.
Nat Rev Immunol
.
2005
;
5
(
3
):
201
-
214
.
11.
Caligiuri
MA
.
Human natural killer cells
.
Blood
.
2008
;
112
(
3
):
461
-
469
.
12.
Vivier
E
,
Raulet
DH
,
Moretta
A
, et al
.
Innate or adaptive immunity? The example of natural killer cells
.
Science
.
2011
;
331
(
6013
):
44
-
49
.
13.
Mancusi
A
,
Ruggeri
L
,
Urbani
E
, et al
.
Haploidentical hematopoietic transplantation from KIR ligand-mismatched donors with activating KIRs reduces nonrelapse mortality
.
Blood
.
2015
;
125
(
20
):
3173
-
3182
.
14.
Colombara
M
,
Antonini
V
,
Riviera
AP
, et al
.
Constitutive activation of p38 and ERK1/2 MAPKs in epithelial cells of myasthenic thymus leads to IL-6 and RANTES overexpression: effects on survival and migration of peripheral T and B cells
.
J Immunol
.
2005
;
175
(
10
):
7021
-
7028
.
15.
Moretta
L
,
Ferlazzo
G
,
Bottino
C
, et al
.
Effector and regulatory events during natural killer-dendritic cell interactions
.
Immunol Rev
.
2006
;
214
(
1
):
219
-
228
.
16.
Walzer
T
,
Dalod
M
,
Robbins
SH
,
Zitvogel
L
,
Vivier
E
.
Natural-killer cells and dendritic cells: “l’union fait la force”
.
Blood
.
2005
;
106
(
7
):
2252
-
2258
.
17.
Kolos
JM
,
Voll
AM
,
Bauder
M
,
Hausch
F
.
FKBP ligands-where we are and where to go?
.
Front Pharmacol
.
2018
;
9
:
1425
.
18.
Graf
L
,
Peterson
PA
,
Sege
K
,
Robinson
PJ
.
Isolation and characterization of mouse beta 2-microglobulin allotypes
.
Mol Immunol
.
1982
;
19
(
7
):
877
-
884
.
19.
Vincent
C
,
Ramackers
JM
,
Bonnefoy
N
,
Revillard
JP
.
Charge heterogeneity of beta 2-microglobulin in lymphoid cells
.
Mol Immunol
.
1989
;
26
(
8
):
727
-
733
.
20.
Martin
CE
,
Spasova
DS
,
Frimpong-Boateng
K
, et al
.
Interleukin-7 availability is maintained by a hematopoietic cytokine sink comprising innate lymphoid cells and T cells
.
Immunity
.
2017
;
47
(
1
):
171
-
182
.
21.
Chen
D
,
Tang
TX
,
Deng
H
,
Yang
XP
,
Tang
ZH
.
Interleukin-7 biology and its effects on immune cells: mediator of generation, differentiation, survival, and homeostasis
.
Front Immunol
.
2021
;
12
:
747324
.
22.
Lennartsson
J
,
Rönnstrand
L
.
Stem cell factor receptor/c-Kit: from basic science to clinical implications
.
Physiol Rev
.
2012
;
92
(
4
):
1619
-
1649
.
23.
Fonda
I
,
Kenig
M
,
Gaberc-Porekar
V
,
Pristovaek
P
,
Menart
V
.
Attachment of histidine tags to recombinant tumor necrosis factor-alpha drastically changes its properties
.
ScientificWorldJournal
.
2002
;
2
:
1312
-
1325
.
24.
Wu
L
,
Su
S
,
Liu
F
, et al
.
Removal of the tag from His-tagged ILYd4, a human CD59 inhibitor, significantly improves its physical properties and its activity
.
Curr Pharm Des
.
2012
;
18
(
27
):
4187
-
4196
.
25.
UniProt. Computationally mapped potential isoform sequences
. Accessed 21 March 2022. https://www.uniprot.org/uniprot/P61769#sequences.
26.
Hofbauer
D
,
Mougiakakos
D
,
Broggini
L
, et al
.
β2-microglobulin triggers NLRP3 inflammasome activation in tumor-associated macrophages to promote multiple myeloma progression
.
Immunity
.
2021
;
54
(
8
):
1772
-
1787
.
27.
Barkal
AA
,
Weiskopf
K
,
Kao
KS
, et al
.
Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy
.
Nat Immunol
.
2018
;
19
(
1
):
76
-
84
.
28.
Ardeniz
Ö.
,
Unger
S
,
Onay
H
, et al
.
β2-Microglobulin deficiency causes a complex immunodeficiency of the innate and adaptive immune system
.
J Allergy Clin Immunol
.
2015
;
136
(
2
):
392
-
401
.
29.
Rossi
S
,
Blazar
BR
,
Farrell
CL
, et al
.
Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease
.
Blood
.
2002
;
100
(
2
):
682
-
691
.
30.
Perales
MA
,
Goldberg
JD
,
Yuan
J
, et al
.
Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation
.
Blood
.
2012
;
120
(
24
):
4882
-
4891
.
31.
Lindemans
CA
,
Calafiore
M
,
Mertelsmann
AM
, et al
.
Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration
.
Nature
.
2015
;
528
(
7583
):
560
-
564
.
32.
Sutherland
JS
,
Spyroglou
L
,
Muirhead
JL
, et al
.
Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade
.
Clin Cancer Res
.
2008
;
14
(
4
):
1138
-
1149
.
33.
Fry
TJ
,
Sinha
M
,
Milliron
M
, et al
.
Flt3 ligand enhances thymic-dependent and thymic-independent immune reconstitution
.
Blood
.
2004
;
104
(
9
):
2794
-
2800
.
34.
Chu
YW
,
Schmitz
S
,
Choudhury
B
, et al
.
Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion
.
Blood
.
2008
;
112
(
7
):
2836
-
2846
.
35.
Zakrzewski
JL
,
Kochman
AA
,
Lu
SX
, et al
.
Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation
.
Nat Med
.
2006
;
12
(
9
):
1039
-
1047
.
36.
Chaudhry
MS
,
Velardi
E
,
Malard
F
,
van den Brink
MR
.
Immune reconstitution after allogeneic hematopoietic stem cell transplantation: time to T up the thymus
.
J Immunol
.
2017
;
198
(
1
):
40
-
46
.
37.
Lucarelli
B
,
Merli
P
,
Bertaina
V
,
Locatelli
F
.
Strategies to accelerate immune recovery after allogeneic hematopoietic stem cell transplantation
.
Expert Rev Clin Immunol
.
2016
;
12
(
3
):
343
-
358
.
38.
Goldberg
GL
,
Zakrzewski
JL
,
Perales
MA
,
van den Brink
MR
.
Clinical strategies to enhance T cell reconstitution
.
Semin Immunol
.
2007
;
19
(
5
):
289
-
296
.
You do not currently have access to this content.
Sign in via your Institution