• Platelets lacking α4A- and β1-tubulins are devoid of marginal band and fully spherical and inefficiently interact with matrices under flow.

  • Mice deficient for α4A- and β1-tubulins exhibit severe defects in hemostatic and thrombotic responses in vivo.

Native circulating blood platelets present with a discoid flat morphology maintained by a submembranous peripheral ring of microtubules, named marginal band. The functional importance of this particular shape is still debated, but it was initially hypothesized to facilitate platelet interaction with the injured vessel wall and to contribute to hemostasis. The importance of the platelet discoid morphology has since been questioned on the absence of clear bleeding tendency in mice lacking the platelet-specific β1-tubulin isotype, which exhibits platelets with a thinner marginal band and an ovoid shape. Here, we generated a mouse model inactivated for β1-tubulin and α4A-tubulin, an α-tubulin isotype strongly enriched in platelets. These mice present with fully spherical platelets completely devoid of a marginal band. In contrast to the single knockouts, the double deletion resulted in a severe bleeding defect in a tail-clipping assay, which was not corrected by increasing the platelet count to normal values by the thrombopoietin-analog romiplostim. In vivo, thrombus formation was almost abolished in a ferric chloride–injury model, with only a thin layer of loosely packed platelets, and mice were protected against death in a model of thromboembolism. In vitro, platelets adhered less efficiently and formed smaller-sized and loosely assembled aggregates when perfused over von Willebrand factor and collagen matrices. In conclusion, this study shows that blood platelets require 2 unique α- and β-tubulin isotypes to acquire their characteristic discoid morphology. Lack of these 2 isotypes has a deleterious effect on flow-dependent aggregate formation and stability, leading to a severe bleeding disorder.

1.
White
JG
,
Rao
GHR
.
Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape
.
Am J Pathol
.
1998
;
152
(
2
):
597
-
609
.
2.
Behnke
O
.
Further studies on microtubules. A marginal bundle in human and rat thrombocytes
.
J Ultrastruct Res
.
1965
;
13
(
5
):
469
-
477
.
3.
Burley
K
,
Westbury
SK
,
Mumford
AD
.
TUBB1 variants and human platelet traits
.
Platelets
.
2018
;
29
(
2
):
209
-
211
.
4.
Strassel
C
,
Magiera
MM
,
Dupuis
A
, et al
.
An essential role for α4A-tubulin in platelet biogenesis
.
Life Sci Alliance
.
2019
;
2
(
1
):
e201900309
.
5.
Kimmerlin
Q
,
Dupuis
A
,
Bodakuntla
S
, et al
.
Mutations in the most divergent α-tubulin isotype, α8-tubulin, cause defective platelet biogenesis
.
J Thromb Haemostasis
.
2022
;
20
(
2
):
461
-
469
.
6.
Italiano
JE
,
Bergmeier
W
,
Tiwari
S
, et al
.
Mechanisms and implications of platelet discoid shape
.
Blood
.
2003
;
101
(
12
):
4789
-
4796
.
7.
Mody
NA
,
Lomakin
O
,
Doggett
TA
,
Diacovo
TG
,
King
MR
.
Mechanics of transient platelet adhesion to von Willebrand factor under flow
.
Biophys J
.
2005
;
88
(
2
):
1432
-
1443
.
8.
Maxwell
MJ
,
Dopheide
SM
,
Turner
SJ
,
Jackson
SP
.
Shear induces a unique series of morphological changes in translocating platelets: effects of morphology on translocation dynamics
.
Arterioscler Thromb Vasc Biol
.
2006
;
26
(
3
):
663
-
669
.
9.
Schwer
HD
,
Lecine
P
,
Tiwari
S
, et al
.
A lineage-restricted and divergent beta-tubulin isoform is essential for the biogenesis, structure and function of blood platelets
.
Curr Biol
.
2001
;
11
(
8
):
579
-
586
.
10.
White
JG
,
de Alarcon
PA
.
Platelet spherocytosis: a new bleeding disorder
.
Am J Hematol
.
2002
;
70
(
2
):
158
-
166
.
11.
Receveur
N
,
Nechipurenko
D
,
Knapp
Y
, et al
.
Shear rate gradients promote a bi-phasic thrombus formation on weak adhesive proteins, such as fibrinogen in a VWF-dependent manner
.
Haematologica
.
2020
;
105
(
10
):
2471
-
2483
.
12.
Janus-Bell
E
,
Yakusheva
A
,
Scandola
C
, et al
.
Characterization of the role of integrin α5β1 in platelet function, hemostasis, and experimental thrombosis
.
Thromb Haemost
.
2022
;
122
(
5
):
767
-
776
.
13.
Léon
C
,
Freund
M
,
Ravanat
C
, et al
.
Key role of the P2Y(1) receptor in tissue factor-induced thrombin-dependent acute thromboembolism: studies in P2Y(1)-knockout mice and mice treated with a P2Y(1) antagonist
.
Circulation
.
2001
;
103
(
5
):
718
-
723
.
14.
Grover
SP
,
Mackman
N
.
How useful are ferric chloride models of arterial thrombosis?
.
Platelets
.
2020
;
31
(
4
):
432
-
438
.
15.
Stalker
TJ
,
Traxler
EA
,
Wu
J
, et al
.
Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network
.
Blood
.
2013
;
121
(
10
):
1875
-
1885
.
16.
Schurr
Y
,
Sperr
A
,
Volz
J
, et al
.
Platelet lamellipodium formation is not required for thrombus formation and stability
.
Blood
.
2019
;
134
(
25
):
2318
-
2329
.
17.
Hao
H
,
Niu
J
,
Xue
B
, et al
.
Golgi-associated microtubules are fast cargo tracks and required for persistent cell migration
.
EMBO Rep
.
2020
;
21
(
3
):
e48385
.
18.
Fourriere
L
,
Jimenez
AJ
,
Perez
F
,
Boncompain
G
.
The role of microtubules in secretory protein transport
.
J Cell Sci
.
2020
;
133
(
2
):
jcs237016
.
19.
Eckly
A
,
Heijnen
H
,
Pertuy
F
, et al
.
Biogenesis of the demarcation membrane system (DMS) in megakaryocytes
.
Blood
.
2014
;
123
(
6
):
921
-
930
.
20.
Patel-Hett
S
,
Richardson
JL
,
Schulze
H
, et al
.
Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules
.
Blood
.
2008
;
111
(
9
):
4605
-
4616
.
21.
Yang
H
,
Ganguly
A
,
Yin
S
,
Cabral
F
.
Megakaryocyte lineage-specific class VI β-tubulin suppresses microtubule dynamics, fragments microtubules, and blocks cell division
.
Cytoskeleton (Hoboken)
.
2011
;
68
(
3
):
175
-
187
.
22.
Robison
P
,
Caporizzo
MA
,
Ahmadzadeh
H
, et al
.
Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes
.
Science
.
2016
;
352
(
6284
):
aaf0659
.
23.
Mitra
A
,
Sept
D
.
Taxol allosterically alters the dynamics of the tubulin dimer and increases the flexibility of microtubules
.
Biophys J
.
2008
;
95
(
7
):
3252
-
3258
.
24.
Strassel
C
,
Nonne
C
,
Eckly
A
, et al
.
Decreased thrombotic tendency in mouse models of the Bernard-Soulier syndrome
.
Arterioscler Thromb Vasc Biol
.
2007
;
27
(
1
):
241
-
247
.
25.
Hodivala-Dilke
KM
,
McHugh
KP
,
Tsakiris
DA
, et al
.
Beta3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival
.
J Clin Invest
.
1999
;
103
(
2
):
229
-
238
.
26.
Morowski
M
,
Vögtle
T
,
Kraft
P
, et al
.
Only severe thrombocytopenia results in bleeding and defective thrombus formation in mice
.
Blood
.
2013
;
121
(
24
):
4938
-
4947
.
27.
Evans
DJW
,
Jackman
LE
,
Chamberlain
J
, et al
.
Platelet P2Y(12) receptor influences the vessel wall response to arterial injury and thrombosis
.
Circulation
.
2009
;
119
(
1
):
116
-
122
.
28.
Eckly
A
,
Hechler
B
,
Freund
M
, et al
.
Mechanisms underlying FeCl3-induced arterial thrombosis
.
J Thromb Haemostasis
.
2011
;
9
(
4
):
779
-
789
.
29.
Panteleev
MA
,
Korin
N
,
Reesink
KD
, et al
.
Wall shear rates in human and mouse arteries: Standardization of hemodynamics for in vitro blood flow assays: communication from the ISTH SSC subcommittee on biorheology
.
J Thromb Haemostasis
.
2021
;
19
(
2
):
588
-
595
.
30.
Baumann
J
,
Sachs
L
,
Otto
O
, et al
.
Reduced platelet forces underlie impaired hemostasis in mouse models of MYH9-related disease
.
Sci Adv
.
2022
;
8
(
20
):
eabn2627
.
You do not currently have access to this content.

Sign in via your Institution