The bispecific T-cell engager (BiTE) blinatumomab against CD19 and CD3 has emerged as the most successful bispecific antibody (bsAb) to date; however, a significant proportion of patients do not respond to the treatments or eventually experience relapse after an initial response, and the recurrence rate increases significantly due to escape or downregulation of the CD19 antigen. To enhance antitumor efficacy and overcome potential immune escape, we developed a novel approach to design a CD19/CD22/CD3 trispecific antibody (tsAb) by site-specifically fusing anti-CD19 scFv (FMC63) and anti-CD22 nanobody (Nb25) to the defined sites of the CD3 antigen-binding fragment (Fab, SP34). This strategy allows for the optimal formation of immune synapses mediated by CD19/CD22/CD3 between target cells and T cells. Optimized tsAb can be superior for inducing T-cellspecific cytotoxicity and cytokine production against CD19+ and/or CD22+ tumor cells compared to other tsAb formats, and demonstrated significantly enhanced antitumor efficacy and the ability to overcome immune escape compared with the corresponding bsAbs alone or in combination, as well as with blinatumomab. In addition, tsAb treatment can lead to the long-term elimination of primary B-ALL patient samples in the PDX model and significantly prolong survival. This novel approach provides unique insight into the structural optimization of T-cell−redirected multispecific antibodies using site-specific recombination, and may be broadly applicable to heterogeneous and resistant tumor populations as well as solid tumors.

  • A site-specific recombinant strategy guarantees the precise structural and functional optimization of CD19/CD22/CD3 trispecific antibody.

  • The optimized CD19/CD22/CD3 exhibited impressive activities in overcoming immune escape and enhancing clearance of B-cell malignancies.

1.
Cheung
LH
,
Zhao
Y
,
Alvarez-Cienfuegos
A
, et al
.
Development of a human immuno-oncology therapeutic agent targeting HER2: targeted delivery of granzyme B
.
J Exp Clin Cancer Res
.
2019
;
38
(
1
):
332
.
2.
Cao
Y
,
Axup
JY
,
Ma
JS
, et al
.
Multiformat T-cell-engaging bispecific antibodies targeting human breast cancers
.
Angew Chem Int Ed Engl
.
2015
;
54
(
24
):
7022
-
7027
.
3.
Cao
YJ
,
Wang
X
,
Wang
Z
, et al
.
Switchable CAR-T cells outperformed traditional antibody-redirected therapeutics targeting breast cancers
.
ACS Synth Biol
.
2021
;
10
(
5
):
1176
-
1183
.
4.
Cao
YJ
,
Yu
C
,
Wu
KL
, et al
.
Synthesis of precision antibody conjugates using proximity-induced chemistry
.
Theranostics
.
2021
;
11
(
18
):
9107
-
9117
.
5.
Du
J
,
Cao
Y
,
Liu
Y
, et al
.
Engineering bifunctional antibodies with constant region fusion architectures
.
J Am Chem Soc
.
2017
;
139
(
51
):
18607
-
18615
.
6.
Zhao
L
,
Cao
YJ
.
Engineered T cell therapy for cancer in the clinic
.
Front Immunol
.
2019
;
10
:
2250
.
7.
Nagorsen
D
,
Kufer
P
,
Baeuerle
PA
,
Bargou
R
.
Blinatumomab: a historical perspective
.
Pharmacol Ther
.
2012
;
136
(
3
):
334
-
342
.
8.
Wu
J
,
Fu
J
,
Zhang
M
,
Liu
D
.
Blinatumomab: a bispecific T cell engager (BiTE) antibody against CD19/CD3 for refractory acute lymphoid leukemia
.
J Hematol Oncol
.
2015
;
8
:
104
.
9.
Linke
R
,
Klein
A
,
Seimetz
D
.
Catumaxomab: clinical development and future directions
.
MAbs
.
2010
;
2
(
2
):
129
-
136
.
10.
Cho
BC
,
Lee
KH
,
Cho
EK
,
Kim
DW
,
Park
K
.
1258O Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in combination with lazertinib, a 3rd-generation tyrosine kinase inhibitor (TKI), in advanced EGFR NSCLC
.
Ann Oncol
.
2020
;
31
:
S813
.
11.
Park
K
,
John
T
,
Kim
SW
,
Lee
JS
,
Cho
BC
.
Amivantamab (JNJ-61186372), an anti-EGFR-MET bispecific antibody, in patients with EGFR exon 20 insertion (exon20ins)-mutated non-small cell lung cancer (NSCLC)
.
J Clin Oncol
.
2020
;
38
(
15_suppl
):
9512
.
12.
Nathan
P
,
Hassel
JC
,
Rutkowski
P
, et al
.
Overall survival benefit with tebentafusp in metastatic uveal melanoma
.
N Engl J Med
.
2021
;
385
(
13
):
1196
-
1206
.
13.
Wudhikarn
K
,
Flynn
JR
,
Rivière
I
, et al
.
Interventions and outcomes of adult patients with B-ALL progressing after CD19 chimeric antigen receptor T-cell therapy
.
Blood
.
2021
;
138
(
7
):
531
-
543
.
14.
Inaba
H
,
Pui
CH
.
Immunotherapy in pediatric acute lymphoblastic leukemia
.
Cancer Metastasis Rev
.
2019
;
38
(
4
):
595
-
610
.
15.
Dinner
S
,
Liedtke
M
.
Antibody-based therapies in patients with acute lymphoblastic leukemia
.
Hematology Am Soc Hematol Educ Program
.
2018
;
2018
(
1
):
9
-
15
.
16.
Sadelain
M
,
Brentjens
R
,
Davila
M
,
Riviere
I
,
Giralt
S
.
Abstract CT102: Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia
.
Cancer Res
.
2014
;
74
(
suppl 19
):
CT102
.
17.
Lee
DW
,
Kochenderfer
JN
,
Stetler-Stevenson
M
, et al
.
T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
.
Lancet
.
2015
;
385
(
9967
):
517
-
528
.
18.
Short
NJ
,
Kantarjian
HM
,
Ravandi
F
, et al
.
Hyper-CVAD and sequential blinatumomab in adults with newly diagnosed Philadelphia chromosome-negative B-cell acute lymphoblastic leukemia: results from a phase ii study [abstract]
.
Blood
.
2020
;
136
(
suppl 1
).
19.
Xu
X
,
Sun
Q
,
Liang
X
, et al
.
Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies
.
Front Immunol
.
2019
;
10
:
2664
.
20.
Beatty
GL
,
Gladney
WL
.
Immune escape mechanisms as a guide for cancer immunotherapy
.
Clin Cancer Res
.
2015
;
21
(
4
):
687
-
692
.
21.
Pillai
V
,
Muralidharan
K
,
Meng
W
, et al
.
CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy
.
Blood Adv
.
2019
;
3
(
22
):
3539
-
3549
.
22.
Schneider
D
,
Xiong
Y
,
Wu
D
, et al
.
Trispecific CD19-CD20-CD22-targeting duoCAR-T cells eliminate antigen-heterogeneous B cell tumors in preclinical models
.
Sci Transl Med
.
2021
;
13
(
586
).
23.
Majzner
RG
,
Mackall
CL
.
Tumor antigen escape from CAR T-cell therapy
.
Cancer Discov
.
2018
;
8
(
10
):
1219
-
1226
.
24.
Sadelain
M
,
Rivière
I
,
Riddell
S
.
Therapeutic T cell engineering
.
Nature
.
2017
;
545
(
7655
):
423
-
431
.
25.
Wang
N
,
Hu
X
,
Cao
W
, et al
.
Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies
.
Blood
.
2020
;
135
(
1
):
17
-
27
.
26.
Wang
Z
,
Cao
YJ
.
Adoptive cell therapy targeting neoantigens: a frontier for cancer research
.
Front Immunol
.
2020
;
11
:
176
.
27.
Wu
L
,
Seung
E
,
Xu
L
, et al
.
Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation
.
Nat Cancer
.
2019
;
1
(
1
):
86
-
98
.
28.
Wang
S
,
Peng
L
,
Xu
W
, et al
.
Preclinical characterization and comparison between CD3/CD19 bispecific and novel CD3/CD19/CD20 trispecific antibodies against B-cell acute lymphoblastic leukemia: targeted immunotherapy for acute lymphoblastic leukemia
.
Front Med
.
2022
;
16
(
1
):
139
-
149
.
29.
Dimasi
N
,
Fleming
R
,
Hay
C
, et al
.
Development of a trispecific antibody designed to simultaneously and efficiently target three different antigens on tumor cells
.
Mol Pharm
.
2015
;
12
(
9
):
3490
.
30.
Basu
R
,
Huse
M
.
Mechanical communication at the immunological synapse
.
Trends Cell Biol
.
2017
;
27
(
4
):
241
-
254
.
31.
Dustin
ML
.
The immunological synapse
.
Cancer Immunol Res
.
2014
;
2
(
11
):
1023
-
1033
.
32.
Jin
W
,
Tamzalit
F
,
Chaudhuri
PK
,
Black
CT
,
Huse
M
,
Kam
LC
.
T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
40
):
19835
-
19840
.
33.
Li
J
,
Stagg
NJ
,
Johnston
J
, et al
.
Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing
.
Cancer Cell
.
2017
;
31
(
3
):
383
-
395
.
34.
Rocha-Perugini
V
,
Zamai
M
,
Gonzalez-Granado
JM
, et al
.
CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses
.
Mol Cell Biol
.
2013
;
33
(
18
):
3644
-
3658
.
35.
Ma
JS
,
Kim
JY
,
Kazane
SA
, et al
.
Versatile strategy for controlling the specificity and activity of engineered T cells
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
4
):
E450
-
458
.
36.
Cao
Y
,
Rodgers
DT
,
Du
J
, et al
.
Design of switchable chimeric antigen receptor T cells targeting breast cancer
.
Angew Chem Int Ed Engl
.
2016
;
55
(
26
):
7520
-
7524
.
37.
Rodgers
DT
,
Mazagova
M
,
Hampton
EN
, et al
.
Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies
.
Proc Natl Acad Sci U S A
.
2016
;
113
(
4
):
E459
-
E468
.
38.
Dickopf
S
,
Georges
GJ
,
Brinkmann
U
.
Format and geometries matter: structure-based design defines the functionality of bispecific antibodies
.
Comput Struct Biotechnol J
.
2020
;
18
:
1221
-
1227
.
39.
Mukherjee
M
,
Mace
EM
,
Carisey
AF
,
Ahmed
N
,
Orange
JS
.
Quantitative imaging approaches to study the CAR immunological synapse
.
Mol Ther
.
2017
;
25
(
8
):
1757
-
1768
.
40.
Davis
SJ
,
van der Merwe
PA
.
The kinetic-segregation model: TCR triggering and beyond
.
Nat Immunol
.
2006
;
7
(
8
):
803
-
809
.
41.
Golay
J
,
Martinelli
S
,
Alzani
R
, et al
.
Cord blood-derived cytokine-induced killer cells combined with blinatumomab as a therapeutic strategy for CD19(+) tumors
.
Cytotherapy
.
2018
;
20
(
8
):
1077
-
1088
.
42.
Correction for Cole
, et al
.
Dietary branched chain amino acids ameliorate injury-induced cognitive impairment
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
5
):
2373
.
43.
Liu
E
,
Tong
Y
,
Dotti
G
, et al
.
Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity
.
Leukemia
.
2018
;
32
(
2
):
520
-
531
.
44.
Zheng
S
,
Gillespie
E
,
Naqvi
AS
, et al
.
Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies
.
Blood Cancer Discov
.
2022
;
3
(
2
):
103
-
115
.
45.
Willier
S
,
Raedler
J
,
Blaeschke
F
, et al
.
Leukemia escape in immune desert: intraocular relapse of pediatric pro-B-ALL during systemic control by CD19-CAR T cells
.
J Immunother Cancer
.
2020
;
8
(
2
):
e001052
.
46.
Zheng
S
,
Gillespie
E
,
Naqvi
AS
, et al
.
Modulation of CD22 protein expression in childhood leukemia by pervasive splicing aberrations: implications for CD22-directed immunotherapies
.
Blood Cancer Discov
.
2022
;
3
(
2
):
103
-
115
.
47.
Krishnamurthy
A
,
Jimeno
A
.
Bispecific antibodies for cancer therapy: a review
.
Pharmacol Ther
.
2018
;
185
:
122
-
134
.
48.
Kersten
MJ
,
Spanjaart
AM
,
Thieblemont
C
.
CD19-directed CAR T-cell therapy in B-cell NHL
.
Curr Opin Oncol
.
2020
;
32
(
5
):
408
-
417
.
49.
Robinson
HR
,
Qi
J
,
Cook
EM
, et al
.
A CD19/CD3 bispecific antibody for effective immunotherapy of chronic lymphocytic leukemia in the ibrutinib era
.
Blood
.
2018
;
132
(
5
):
521
-
532
.
50.
De Munter
S
,
Ingels
J
,
Goetgeluk
G
, et al
.
Nanobody based dual specific CARs
.
Int J Mol Sci
.
2018
;
19
(
2
):
403
.
51.
Fry
TJ
,
Shah
NN
,
Orentas
RJ
, et al
.
CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy
.
Nat Med
.
2018
;
24
(
1
):
20
-
28
.
52.
Tong
C
,
Zhang
Y
,
Liu
Y
, et al
.
Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma
.
Blood
.
2020
;
136
(
14
):
1632
-
1644
.
53.
Zhang
Y
,
Fang
C
,
Wang
RE
, et al
.
A tumor-targeted immune checkpoint blocker
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
32
):
15889
-
15894
.
54.
Bargou
R
,
Leo
E
,
Zugmaier
G
, et al
.
Tumor regression in cancer patients by very low doses of a T cell-engaging antibody
.
Science
.
2008
;
321
(
5891
):
974
-
977
.
55.
Goebeler
ME
,
Bargou
R
.
Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy
.
Leuk Lymphoma
.
2016
;
57
(
5
):
1021
-
1032
.
56.
Mei
L
,
Zappala
F
,
Tsourkas
A
.
Rapid production of bispecific antibodies from off-the-shelf IgGs with high yield and purity
.
Bioconjug Chem
.
2022
;
33
(
1
):
134
-
141
.
57.
Gauthier
L
,
Morel
A
,
Anceriz
N
, et al
.
Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity
.
Cell
.
2019
;
177
(
7
):
1701
-
1713.e1716
.
58.
Brinkmann
U
,
Kontermann
RE
.
The making of bispecific antibodies
.
MAbs
.
2017
;
9
(
2
):
182
-
212
.
59.
de Taeye
SW
,
Bentlage
AEH
,
Mebius
MM
, et al
.
FcγR Binding and ADCC activity of human IgG allotypes
.
Front Immunol
.
2020
;
11
:
740
.
You do not currently have access to this content.

Sign in via your Institution