• Dual targeting of CD38 and CD47 elevates in vitro antibody-dependent phagocytosis in T-ALL.

Acute lymphoblastic leukemia (ALL) is the most common malignant disease affecting children. Although therapeutic strategies have improved, T-cell acute lymphoblastic leukemia (T-ALL) relapse is associated with chemoresistance and a poor prognosis. One strategy to overcome this obstacle is the application of monoclonal antibodies. Here, we show that leukemic cells from patients with T-ALL express surface CD38 and CD47, both attractive targets for antibody therapy. We therefore investigated the commercially available CD38 antibody daratumumab (Dara) in combination with a proprietary modified CD47 antibody (Hu5F9-IgG2σ) in vitro and in vivo. Compared with single treatments, this combination significantly increased in vitro antibody-dependent cellular phagocytosis in T-ALL cell lines as well as in random de novo and relapsed/refractory T-ALL patient-derived xenograft (PDX) samples. Similarly, enhanced antibody-dependent cellular phagocytosis was observed when combining Dara with pharmacologic inhibition of CD47 interactions using a glutaminyl cyclase inhibitor. Phase 2–like preclinical in vivo trials using T-ALL PDX samples in experimental minimal residual disease–like (MRD-like) and overt leukemia models revealed a high antileukemic efficacy of CD47 blockade alone. However, T-ALL xenograft mice subjected to chemotherapy first (postchemotherapy MRD) and subsequently cotreated with Dara and Hu5F9-IgG2σ displayed significantly reduced bone marrow infiltration compared with single treatments. In relapsed and highly refractory T-ALL PDX combined treatment with Dara and Hu5F9-IgG2σ was required to substantially prolong survival compared with single treatments. These findings suggest that combining CD47 blockade with Dara is a promising therapy for T-ALL, especially for relapsed/refractory disease harboring a dismal prognosis in patients.

1.
Lesch
S
,
Gill
S
.
The promise and perils of immunotherapy
.
Blood Adv.
2021
;
5
(
18
):
3709
-
3725
.
2.
Cordo’
V
,
van der Zwet
JCG
,
Canté-Barrett
K
,
Pieters
R
,
Meijerink
JPP
.
T-cell acute lymphoblastic leukemia: a roadmap to targeted therapies
.
Blood Cancer Discov.
2020
;
2
(
1
):
19
-
31
.
3.
van de Donk
NWCJ
,
Janmaat
ML
,
Mutis
T
, et al
.
Monoclonal antibodies targeting CD38 in hematological malignancies and beyond
.
Immunol Rev.
2016
;
270
(
1
):
95
-
112
.
4.
Hogan
KA
,
Chini
CCS
,
Chini
EN
.
The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases
.
Front Immunol.
2019
;
10
(
1187
):
1187
.
5.
Tembhare
PR
,
Sriram
H
,
Khanka
T
, et al
.
Flow cytometric evaluation of CD38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-CD38 immunotherapy
.
J Immunother Cancer.
2020
;
8
(
1
):
e000630
.
6.
Usmani
SZ
,
Weiss
BM
,
Plesner
T
, et al
.
Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma
.
Blood.
2016
;
128
(
1
):
37
-
44
.
7.
Plesner
T
,
Arkenau
H-T
,
Gimsing
P
, et al
.
Phase 1/2 study of daratumumab, lenalidomide, and dexamethasone for relapsed multiple myeloma
.
Blood.
2016
;
128
(
14
):
1821
-
1828
.
8.
Abdallah
N
,
Kumar
SK
.
Daratumumab in untreated newly diagnosed multiple myeloma
.
Ther Adv Hematol.
2019
;
10
:
2040620719894871
.
9.
Plesner
T
,
Krejcik
J
.
Daratumumab for the treatment of multiple myeloma
.
Front Immunol.
2018
;
9
(
1228
):
1228
.
10.
Bride
KL
,
Vincent
TL
,
Im
SY
, et al
.
Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia
.
Blood.
2018
;
131
(
9
):
995
-
999
.
11.
Vogiatzi
F
,
Winterberg
D
,
Lenk
L
, et al
.
Daratumumab eradicates minimal residual disease in a preclinical model of pediatric T-cell acute lymphoblastic leukemia
.
Blood.
2019
;
134
(
8
):
713
-
716
.
12.
Cerrano
M
,
Castella
B
,
Lia
G
, et al
.
Immunomodulatory and clinical effects of daratumumab in T-cell acute lymphoblastic leukaemia
.
Br J Haematol.
2020
;
191
(
1
):
e28
-
e32
.
13.
Ofran
Y
,
Ringelstein-Harlev
S
,
Slouzkey
I
, et al
.
Daratumumab for eradication of minimal residual disease in high-risk advanced relapse of T-cell/CD19/CD22-negative acute lymphoblastic leukemia
.
Leukemia.
2020
;
34
(
1
):
293
-
295
.
14.
Barclay
AN
,
Van den Berg
TK
.
The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target
.
Annu Rev Immunol.
2014
;
32
:
25
-
50
.
15.
Chao
MP
,
Takimoto
CH
,
Feng
DD
, et al
.
Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies
.
Front Oncol.
2020
;
9
:
1380
.
16.
Eladl
E
,
Tremblay-LeMay
R
,
Rastgoo
N
, et al
.
Role of CD47 in hematological malignancies
.
J Hematol Oncol.
2020
;
13
(
1
):
96
.
17.
Chao
MP
,
Alizadeh
AA
,
Tang
C
, et al
.
Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia
.
Cancer Res.
2011
;
71
(
4
):
1374
-
1384
.
18.
Majeti
R
,
Chao
MP
,
Alizadeh
AA
, et al
.
CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells
.
Cell.
2009
;
138
(
2
):
286
-
299
.
19.
Haferlach
T
,
Kohlmann
A
,
Wieczorek
L
, et al
.
Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group
.
J Clin Oncol.
2010
;
28
(
15
):
2529
-
2537
.
20.
Feng
M
,
Jiang
W
,
Kim
BYS
,
Zhang
CC
,
Fu
YX
,
Weissman
IL
.
Phagocytosis checkpoints as new targets for cancer immunotherapy
.
Nat Rev Cancer.
2019
;
19
(
10
):
568
-
586
.
21.
Jalil
AR
,
Andrechak
JC
,
Discher
DE
.
Macrophage checkpoint blockade: results from initial clinical trials, binding analyses, and CD47-SIRPα structure-function
.
Antib Ther.
2020
;
3
(
2
):
80
-
94
.
22.
Advani
R
,
Flinn
I
,
Popplewell
L
, et al
.
CD47 Blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma
.
N Engl J Med.
2018
;
379
(
18
):
1711
-
1721
.
23.
Jaiswal
S
,
Jamieson
CH
,
Pang
WW
, et al
.
CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis
.
Cell.
2009
;
138
(
2
):
271
-
285
.
24.
Wu
Z
,
Weng
L
,
Zhang
T
, et al
.
Identification of glutaminyl cyclase isoenzyme isoQC as a regulator of SIRPα-CD47 axis
.
Cell Res.
2019
;
29
(
6
):
502
-
505
.
25.
Inhibition of QPCTL induces myeloid immune checkpoint blockade
.
Cancer Discov.
2019
;
9
(
5
):
OF8
.
26.
Logtenberg
MEW
,
Jansen
JHM
,
Raaben
M
, et al
.
Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy
.
Nat Med.
2019
;
25
(
4
):
612
-
619
.
27.
Vafa
O
,
Gilliland
GL
,
Brezski
RJ
, et al
.
An engineered Fc variant of an IgG eliminates all immune effector functions via structural perturbations
.
Methods.
2014
;
65
(
1
):
114
-
126
.
28.
Liu
J
,
Wang
L
,
Zhao
F
, et al
.
Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential
.
PLoS One.
2015
;
10
(
9
):
e0137345
.
29.
Schewe
DM
,
Alsadeq
A
,
Sattler
C
, et al
.
An Fc-engineered CD19 antibody eradicates MRD in patient-derived MLL-rearranged acute lymphoblastic leukemia xenografts
.
Blood.
2017
;
130
(
13
):
1543
-
1552
.
30.
Gao
H
,
Korn
JM
,
Ferretti
S
, et al
.
High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response
.
Nat Med.
2015
;
21
(
11
):
1318
-
1325
.
31.
Townsend
EC
,
Murakami
MA
,
Christodoulou
A
, et al
.
The public repository of xenografts enables discovery and randomized Phase II-like trials in mice
.
Cancer Cell.
2016
;
29
(
4
):
574
-
586
.
32.
Evers
M
,
Rösner
T
,
Dünkel
A
, et al
.
The selection of variable regions affects effector mechanisms of IgA antibodies against CD20
.
Blood Adv.
2021
;
5
(
19
):
3807
-
3820
.
33.
Rebres
RA
,
Vaz
LE
,
Green
JM
,
Brown
EJ
.
Normal ligand binding and signaling by CD47 (integrin-associated protein) requires a long range disulfide bond between the extracellular and membrane-spanning domains
.
J Biol Chem.
2001
;
276
(
37
):
34607
-
34616
.
34.
Reinherz
EL
,
Schlossman
SF
.
The differentiation and function of human T lymphocytes
.
Cell.
1980
;
19
(
4
):
821
-
827
.
35.
Leclair
P
,
Liu
CC
,
Monajemi
M
,
Reid
GS
,
Sly
LM
,
Lim
CJ
.
CD47-ligation induced cell death in T-acute lymphoblastic leukemia
.
Cell Death Dis.
2018
;
9
(
5
):
544
.
36.
van de Donk
NWCJ
,
Usmani
SZ
.
CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance
.
Front Immunol.
2018
;
9
:
2134
.
37.
Kellner
C
,
Derer
S
,
Valerius
T
,
Peipp
M
.
Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions
.
Methods.
2014
;
65
(
1
):
105
-
113
.
38.
Gül
N
,
van Egmond
M
.
Antibody-dependent phagocytosis of tumor cells by macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer
.
Cancer Res.
2015
;
75
(
23
):
5008
-
5013
.
39.
Overdijk
MB
,
Verploegen
S
,
Bögels
M
, et al
.
Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma
.
MAbs.
2015
;
7
(
2
):
311
-
321
.
40.
Matas-Céspedes
A
,
Vidal-Crespo
A
,
Rodriguez
V
, et al
.
The human CD38 monoclonal antibody daratumumab shows antitumor activity and hampers leukemia-microenvironment interactions in chronic lymphocytic leukemia
.
Clin Cancer Res.
2017
;
23
(
6
):
1493
-
1505
.
41.
Horenstein
AL
,
Bracci
C
,
Morandi
F
,
Malavasi
F
.
CD38 in adenosinergic pathways and metabolic re-programming in human multiple myeloma cells: in-tandem insights from basic science to therapy
.
Front Immunol.
2019
;
10
:
760
.
42.
Nakamura
K
,
Casey
M
,
Oey
H
, et al
.
Targeting an adenosine-mediated “don’t eat me signal” augments anti-lymphoma immunity by anti-CD20 monoclonal antibody
.
Leukemia.
2020
;
34
(
10
):
2708
-
2721
.
43.
Saltarella
I
,
Desantis
V
,
Melaccio
A
, et al
.
Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma
.
Cells.
2020
;
9
(
1
):
E167
.
44.
Kamber
RA
,
Nishiga
Y
,
Morton
B
, et al
.
Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis
.
Nature.
2021
;
597
(
7877
):
549
-
554
.
45.
Weiskopf
K
,
Ring
AM
,
Ho
CC
, et al
.
Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies
.
Science.
2013
;
341
(
6141
):
88
-
91
.
46.
Suter
EC
,
Schmid
EM
,
Harris
AR
,
Voets
E
,
Francica
B
,
Fletcher
DA
.
Antibody:CD47 ratio regulates macrophage phagocytosis through competitive receptor phosphorylation
.
Cell Rep.
2021
;
36
(
8
):
109587
.
47.
Pietsch
EC
,
Dong
J
,
Cardoso
R
, et al
.
Anti-leukemic activity and tolerability of anti-human CD47 monoclonal antibodies
.
Blood Cancer J.
2017
;
7
(
2
):
e536
.
48.
Zhang
W
,
Huang
Q
,
Xiao
W
, et al
.
Advances in anti-tumor treatments targeting the CD47/SIRPα axis
.
Front Immunol.
2020
;
11
(
18
):
18
.
49.
Velliquette
RW
,
Aeschlimann
J
,
Kirkegaard
J
,
Shakarian
G
,
Lomas-Francis
C
,
Westhoff
CM
.
Monoclonal anti-CD47 interference in red cell and platelet testing
.
Transfusion.
2019
;
59
(
2
):
730
-
737
.
50.
Nijhof
IS
,
Casneuf
T
,
van Velzen
J
, et al
.
CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma
.
Blood.
2016
;
128
(
7
):
959
-
970
.
51.
Rastgoo
N
,
Wu
J
,
Liu
A
, et al
.
Targeting CD47/TNFAIP8 by miR-155 overcomes drug resistance and inhibits tumor growth through induction of phagocytosis and apoptosis in multiple myeloma
.
Haematologica.
2020
;
105
(
12
):
2813
-
2823
.
You do not currently have access to this content.

Sign in via your Institution