• BHK-derived FVIII possesses higher levels of nonhuman αGal compared with CHO-derived FVIII.

  • BHK-derived FVIII exhibits increased reactivity with serum from αGal-KO mice and increased immunogenicity in αGal-KO recipients.

Recombinant factor VIII (FVIII) products represent a life-saving intervention for patients with hemophilia A. However, patients can develop antibodies against FVIII that prevent its function and directly increase morbidity and mortality. The development of anti-FVIII antibodies varies depending on the type of recombinant product used, with previous studies suggesting that second-generation baby hamster kidney (BHK)-derived FVIII products display greater immunogenicity than do third-generation Chinese hamster ovary (CHO)-derived FVIII products. However, the underlying mechanisms responsible for these differences remain incompletely understood. Our results demonstrate that BHK cells express higher levels of the nonhuman carbohydrate α1-3 galactose (αGal) than do CHO cells, suggesting that αGal incorporation onto FVIII may result in anti-αGal antibody recognition that could positively influence the development of anti-FVIII antibodies. Consistent with this, BHK-derived FVIII exhibits increased levels of αGal, which corresponds to increased reactivity with anti-αGal antibodies. Infusion of BHK-derived, but not CHO-derived, FVIII into αGal–knockout mice, which spontaneously generate anti-αGal antibodies, results in significantly higher anti-FVIII antibody formation, suggesting that the increased levels of αGal on BHK-derived FVIII can influence immunogenicity. These results suggest that posttranslational modifications of recombinant FVIII products with nonhuman carbohydrates may influence the development of anti-FVIII antibodies.

1.
Dunn
AL
,
Abshire
TC
.
Current issues in prophylactic therapy for persons with hemophilia
.
Acta Haematol.
2006
;
115
(
3-4
):
162
-
171
.
2.
Ehrenforth
S
,
Kreuz
W
,
Scharrer
I
, et al
.
Incidence of development of factor VIII and factor IX inhibitors in haemophiliacs
.
Lancet.
1992
;
339
(
8793
):
594
-
598
.
3.
Meeks
SL
,
Healey
JF
,
Parker
ET
,
Barrow
RT
,
Lollar
P
.
Antihuman factor VIII C2 domain antibodies in hemophilia A mice recognize a functionally complex continuous spectrum of epitopes dominated by inhibitors of factor VIII activation
.
Blood.
2007
;
110
(
13
):
4234
-
4242
.
4.
Shima
M
,
Hanabusa
H
,
Taki
M
, et al
.
Factor VIII-mimetic function of humanized bispecific antibody in hemophilia A
.
N Engl J Med.
2016
;
374
(
21
):
2044
-
2053
.
5.
Aledort
LM
.
Comparative thrombotic event incidence after infusion of recombinant factor VIIa versus factor VIII inhibitor bypass activity
.
J Thromb Haemost.
2004
;
2
(
10
):
1700
-
1708
.
6.
Kempton
CL
,
Meeks
SL
.
Toward optimal therapy for inhibitors in hemophilia
.
Blood.
2014
;
124
(
23
):
3365
-
3372
.
7.
Aledort
L
,
Mannucci
PM
,
Schramm
W
,
Tarantino
M
.
Factor VIII replacement is still the standard of care in haemophilia A
.
Blood Transfus.
2019
;
17
(
6
):
479
-
486
.
8.
Astermark
J
,
Donfield
SM
,
Gomperts
ED
, et al;
Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort
.
The polygenic nature of inhibitors in hemophilia A: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort
.
Blood.
2013
;
121
(
8
):
1446
-
1454
.
9.
Gouw
SC
,
van der Bom
JG
,
Marijke van den Berg
H
.
Treatment-related risk factors of inhibitor development in previously untreated patients with hemophilia A: the CANAL cohort study
.
Blood.
2007
;
109
(
11
):
4648
-
4654
.
10.
Scott
DW
,
Pratt
KP
.
Factor VIII: perspectives on immunogenicity and tolerogenic strategies
.
Front Immunol.
2020
;
10
:
3078
.
11.
Gouw
SC
,
van der Bom
JG
,
Ljung
R
, et al;
PedNet and RODIN Study Group
.
Factor VIII products and inhibitor development in severe hemophilia A
.
N Engl J Med.
2013
;
368
(
3
):
231
-
239
.
12.
Lai
JD
,
Swystun
LL
,
Cartier
D
, et al
.
N-linked glycosylation modulates the immunogenicity of recombinant human factor VIII in hemophilia A mice
.
Haematologica.
2018
;
103
(
11
):
1925
-
1936
.
13.
Cummings
RD
.
The repertoire of glycan determinants in the human glycome
.
Mol Biosyst.
2009
;
5
(
10
):
1087
-
1104
.
14.
Galili
U
.
The Natural Anti-Gal Antibody as Foe Turned Friend in Medicine.
London, United Kingdom
:
Elsevier/Academic Press
;
2018
15.
Galili
U
,
Clark
MR
,
Shohet
SB
,
Buehler
J
,
Macher
BA
.
Evolutionary relationship between the natural anti-Gal antibody and the Gal alpha 1----3Gal epitope in primates
.
Proc Natl Acad Sci USA.
1987
;
84
(
5
):
1369
-
1373
.
16.
Galili
U
,
Mandrell
RE
,
Hamadeh
RM
,
Shohet
SB
,
Griffiss
JM
.
Interaction between human natural anti-alpha-galactosyl immunoglobulin G and bacteria of the human flora
.
Infect Immun.
1988
;
56
(
7
):
1730
-
1737
.
17.
Crispell
G
,
Commins
SP
,
Archer-Hartman
SA
, et al
.
Discovery of alpha-Gal-containing antigens in North American tick species believed to induce red meat allergy
.
Front Immunol.
2019
;
10
:
1056
.
18.
Commins
SP
,
Platts-Mills
TA
.
Tick bites and red meat allergy
.
Curr Opin Allergy Clin Immunol.
2013
;
13
(
4
):
354
-
359
.
19.
Kirkeby
S
,
Moe
D
.
Binding of Griffonia simplicifolia 1 isolectin B4 (GS1 B4) to alpha-galactose antigens
.
Immunol Cell Biol.
2001
;
79
(
2
):
121
-
127
.
20.
Peters
BP
,
Goldstein
IJ
.
The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of alpha-D-galactopyranosyl groups. Their occurrence in basement membranes
.
Exp Cell Res.
1979
;
120
(
2
):
321
-
334
.
21.
Stowell
SR
,
Arthur
CM
,
Mehta
P
, et al
.
Galectin-1, -2, and -3 exhibit differential recognition of sialylated glycans and blood group antigens
.
J Biol Chem.
2008
;
283
(
15
):
10109
-
10123
.
22.
Xia
B
,
Zhang
W
,
Li
X
, et al
.
Serum N-glycan and O-glycan analysis by mass spectrometry for diagnosis of congenital disorders of glycosylation
.
Anal Biochem.
2013
;
442
(
2
):
178
-
185
.
23.
Stowell
SR
,
Arthur
CM
,
Dias-Baruffi
M
, et al
.
Innate immune lectins kill bacteria expressing blood group antigen
.
Nat Med.
2010
;
16
(
3
):
295
-
301
.
24.
Stowell
SR
,
Arthur
CM
,
McBride
R
, et al
.
Microbial glycan microarrays define key features of host-microbial interactions
.
Nat Chem Biol.
2014
;
10
(
6
):
470
-
476
.
25.
Sullivan
HC
,
Gerner-Smidt
C
,
Nooka
AK
, et al
.
Daratumumab (anti-CD38) induces loss of CD38 on red blood cells
.
Blood.
2017
;
129
(
22
):
3033
-
3037
.
26.
Cohn
CS
,
Delaney
M
,
Johnson
ST
,
Katz
LM
. AABB Technical Manual, 20th edition.
2020
(AABB, Bethesda, MD).
27.
Zerra
PE
,
Cox
C
,
Baldwin
WH
, et al
.
Marginal zone B cells are critical to factor VIII inhibitor formation in mice with hemophilia A
.
Blood.
2017
;
130
(
23
):
2559
-
2568
.
28.
Takeuchi
M
,
Takasaki
S
,
Miyazaki
H
, et al
.
Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells
.
J Biol Chem.
1988
;
263
(
8
):
3657
-
3663
.
29.
Smith
DF
,
Larsen
RD
,
Mattox
S
,
Lowe
JB
,
Cummings
RD
.
Transfer and expression of a murine UDP-Gal:beta-D-Gal-alpha 1,3-galactosyltransferase gene in transfected Chinese hamster ovary cells. Competition reactions between the alpha 1,3-galactosyltransferase and the endogenous alpha 2,3-sialyltransferase
.
J Biol Chem.
1990
;
265
(
11
):
6225
-
6234
.
30.
Ashford
DA
,
Alafi
CD
,
Gamble
VM
, et al
.
Site-specific glycosylation of recombinant rat and human soluble CD4 variants expressed in Chinese hamster ovary cells
.
J Biol Chem.
1993
;
268
(
5
):
3260
-
3267
.
31.
Bosques
CJ
,
Collins
BE
,
Meador
JW
III
, et al
.
Chinese hamster ovary cells can produce galactose-α-1,3-galactose antigens on proteins
[published addendum appears in Nat Biotechnol. 2011;29:459].
Nat Biotechnol.
2010
;
28
(
11
):
1153
-
1156
.
32.
Hironaka
T
,
Furukawa
K
,
Esmon
PC
, et al
.
Comparative study of the sugar chains of factor VIII purified from human plasma and from the culture media of recombinant baby hamster kidney cells
.
J Biol Chem.
1992
;
267
(
12
):
8012
-
8020
.
33.
Abdel-Motal
U
,
Wang
S
,
Lu
S
,
Wigglesworth
K
,
Galili
U
.
Increased immunogenicity of human immunodeficiency virus gp120 engineered to express Galalpha1-3Galbeta1-4GlcNAc-R epitopes
.
J Virol.
2006
;
80
(
14
):
6943
-
6951
.
34.
Henion
TR
,
Gerhard
W
,
Anaraki
F
,
Galili
U
.
Synthesis of alpha-gal epitopes on influenza virus vaccines, by recombinant alpha 1,3galactosyltransferase, enables the formation of immune complexes with the natural anti-Gal antibody
.
Vaccine.
1997
;
15
(
11
):
1174
-
1182
.
35.
Abdel-Motal
UM
,
Guay
HM
,
Wigglesworth
K
,
Welsh
RM
,
Galili
U
.
Immunogenicity of influenza virus vaccine is increased by anti-gal-mediated targeting to antigen-presenting cells
.
J Virol.
2007
;
81
(
17
):
9131
-
9141
.
36.
Thall
AD
,
Malý
P
,
Lowe
JB
.
Oocyte Gal alpha 1,3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse
.
J Biol Chem.
1995
;
270
(
37
):
21437
-
21440
.
You do not currently have access to this content.

Sign in via your Institution

Sign In