• Asxl1−/− accelerated CMML progression and promoted CMML transformation to AML in NrasG12D/+ mice.

  • A suppressive immune microenvironment and upregulation of AP-1 TFs promote CMML transformation to AML.

Mutations in chromatin regulator ASXL1 are frequently identified in myeloid malignancies, in particular ∼40% of patients with chronic myelomonocytic leukemia (CMML). ASXL1 mutations are associated with poor prognosis in CMML and significantly co-occur with NRAS mutations. Here, we show that concurrent ASXL1 and NRAS mutations defined a population of CMML patients who had shorter leukemia-free survival than those with ASXL1 mutation only. Corroborating this human data, Asxl1−/− accelerated CMML progression and promoted CMML transformation to acute myeloid leukemia (AML) in NrasG12D/+ mice. NrasG12D/+;Asxl1−/− (NA) leukemia cells displayed hyperactivation of MEK/ERK signaling, increased global levels of H3K27ac, upregulation of Flt3. Moreover, we find that NA-AML cells overexpressed all the major inhibitory immune checkpoint ligands: programmed death-ligand 1 (PD-L1)/PD-L2, CD155, and CD80/CD86. Among them, overexpression of PD-L1 and CD86 correlated with upregulation of AP-1 transcription factors (TFs) in NA-AML cells. An AP-1 inhibitor or short hairpin RNAs against AP-1 TF Jun decreased PD-L1 and CD86 expression in NA-AML cells. Once NA-AML cells were transplanted into syngeneic recipients, NA-derived T cells were not detectable. Host-derived wild-type T cells overexpressed programmed cell death protein 1 (PD-1) and T-cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) receptors, leading to a predominant exhausted T-cell phenotype. Combined inhibition of MEK and BET resulted in downregulation of Flt3 and AP-1 expression, partial restoration of the immune microenvironment, enhancement of CD8 T-cell cytotoxicity, and prolonged survival in NA-AML mice. Our study suggests that combined targeted therapy and immunotherapy may be beneficial for treating secondary AML with concurrent ASXL1 and NRAS mutations.

1.
Sinclair
DA
,
Milne
TA
,
Hodgson
JW
, et al
.
The additional sex combs gene of Drosophila encodes a chromatin protein that binds to shared and unique Polycomb group sites on polytene chromosomes
.
Development.
1998
;
125
(
7
):
1207
-
1216
.
2.
Inoue
D
,
Matsumoto
M
,
Nagase
R
, et al
.
Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels
.
Exp Hematol.
2016
;
44
(
3
):
172
-
176.e1
.
3.
Abdel-Wahab
O
,
Adli
M
,
LaFave
LM
, et al
.
ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression
.
Cancer Cell.
2012
;
22
(
2
):
180
-
193
.
4.
Abdel-Wahab
O
,
Dey
A
.
The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics
.
Leukemia.
2013
;
27
(
1
):
10
-
15
.
5.
Inoue
D
,
Fujino
T
,
Sheridan
P
, et al
.
A novel ASXL1-OGT axis plays roles in H3K4 methylation and tumor suppression in myeloid malignancies
.
Leukemia.
2018
;
32
(
6
):
1327
-
1337
.
6.
Dey
A
,
Seshasayee
D
,
Noubade
R
, et al
.
Loss of the tumor suppressor BAP1 causes myeloid transformation
.
Science.
2012
;
337
(
6101
):
1541
-
1546
.
7.
Wang
J
,
Li
Z
,
He
Y
, et al
.
Loss of Asxl1 leads to myelodysplastic syndrome-like disease in mice
.
Blood.
2014
;
123
(
4
):
541
-
553
.
8.
Itzykson
R
,
Kosmider
O
,
Renneville
A
, et al
.
Prognostic score including gene mutations in chronic myelomonocytic leukemia
.
J Clin Oncol.
2013
;
31
(
19
):
2428
-
2436
.
9.
Onida
F
,
Beran
M
.
Chronic myelomonocytic leukemia: myeloproliferative variant
.
Curr Hematol Rep.
2004
;
3
(
3
):
218
-
226
.
10.
Wang
J
,
Liu
Y
,
Li
Z
, et al
.
Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia
.
Blood.
2010
;
116
(
26
):
5991
-
6002
.
11.
Li
Q
,
Haigis
KM
,
McDaniel
A
, et al
.
Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus
.
Blood.
2011
;
117
(
6
):
2022
-
2032
.
12.
Wang
J
,
Liu
Y
,
Li
Z
, et al
.
Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner
.
Blood.
2011
;
118
(
2
):
368
-
379
.
13.
Xu
J
,
Haigis
KM
,
Firestone
AJ
, et al
.
Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation
.
Cancer Discov.
2013
;
3
(
9
):
993
-
1001
.
14.
Kong
G
,
Chang
YI
,
You
X
, et al
.
The ability of endogenous Nras oncogenes to initiate leukemia is codon-dependent
.
Leukemia.
2016
;
30
(
9
):
1935
-
1938
.
15.
Chen
TC
,
Hou
HA
,
Chou
WC
, et al
.
Dynamics of ASXL1 mutation and other associated genetic alterations during disease progression in patients with primary myelodysplastic syndrome
.
Blood Cancer J.
2014
;
4
(
1
):
e177
.
16.
Patnaik
MM
,
Itzykson
R
,
Lasho
TL
, et al
.
ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients
.
Leukemia.
2014
;
28
(
11
):
2206
-
2212
.
17.
Elena
C
,
Gallì
A
,
Such
E
, et al
.
Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia
.
Blood.
2016
;
128
(
10
):
1408
-
1417
.
18.
Abdel-Wahab
O
,
Gao
J
,
Adli
M
, et al
.
Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo
.
J Exp Med.
2013
;
210
(
12
):
2641
-
2659
.
19.
Damnernsawad
A
,
Kong
G
,
Wen
Z
, et al
.
Kras is required for adult hematopoiesis
.
Stem Cells.
2016
;
34
(
7
):
1859
-
1871
.
20.
Wang
J
,
Kong
G
,
Liu
Y
, et al
.
Nras(G12D/+) promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions
.
Blood.
2013
;
121
(
26
):
5203
-
5207
.
21.
Will
B
,
Zhou
L
,
Vogler
TO
, et al
.
Stem and progenitor cells in myelodysplastic syndromes show aberrant stage-specific expansion and harbor genetic and epigenetic alterations
.
Blood.
2012
;
120
(
10
):
2076
-
2086
.
22.
Sridharan
A
,
Schinke
CD
,
Georgiev
G
, et al
.
Stem cell mutations can be detected in myeloma patients years before onset of secondary leukemias
.
Blood Adv.
2019
;
3
(
23
):
3962
-
3967
.
23.
Carr
RM
,
Vorobyev
D
,
Lasho
T
, et al
.
RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis
.
Nat Commun.
2021
;
12
(
1
):
2901
.
24.
Du
J
,
Liu
Y
,
Meline
B
, et al
.
Loss of CD44 attenuates aberrant GM-CSF signaling in Kras G12D hematopoietic progenitor/precursor cells and prolongs the survival of diseased animals
.
Leukemia.
2013
;
27
(
3
):
754
-
757
.
25.
Chang
YI
,
You
X
,
Kong
G
, et al
.
Loss of Dnmt3a and endogenous Kras(G12D/+) cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis
.
Leukemia.
2015
;
29
(
9
):
1847
-
1856
.
26.
Li
Q
,
Bohin
N
,
Wen
T
, et al
.
Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness
.
Nature.
2013
;
504
(
7478
):
143
-
147
.
27.
Fanjul
A
,
Dawson
MI
,
Hobbs
PD
, et al
.
A new class of retinoids with selective inhibition of AP-1 inhibits proliferation
.
Nature.
1994
;
372
(
6501
):
107
-
111
.
28.
Ding
RR
,
Yuan
JL
,
Jia
YN
, et al
.
Epstein-Barr virus-encoded LMP1 regulated Pim1 kinase expression promotes nasopharyngeal carcinoma cells proliferation
.
OncoTargets Ther.
2019
;
12
:
1137
-
1146
.
29.
Sengupta
D
,
Kannan
A
,
Kern
M
, et al
.
Disruption of BRD4 at H3K27Ac-enriched enhancer region correlates with decreased c-Myc expression in Merkel cell carcinoma
.
Epigenetics.
2015
;
10
(
6
):
460
-
466
.
30.
Kakadia
S
,
Yarlagadda
N
,
Awad
R
, et al
.
Mechanisms of resistance to BRAF and MEK inhibitors and clinical update of US Food and Drug Administration-approved targeted therapy in advanced melanoma
.
OncoTargets Ther.
2018
;
11
:
7095
-
7107
.
31.
Nicodeme
E
,
Jeffrey
KL
,
Schaefer
U
, et al
.
Suppression of inflammation by a synthetic histone mimic
.
Nature.
2010
;
468
(
7327
):
1119
-
1123
.
32.
Gu
Z
,
Liu
Y
,
Cai
F
, et al
.
Loss of EZH2 reprograms BCAA metabolism to drive leukemic transformation
.
Cancer Discov.
2019
;
9
(
9
):
1228
-
1247
.
33.
Zhang
P
,
He
F
,
Bai
J
, et al
.
Chromatin regulator Asxl1 loss and Nf1 haploinsufficiency cooperate to accelerate myeloid malignancy
.
J Clin Invest.
2018
;
128
(
12
):
5383
-
5398
.
34.
Manchado
E
,
Weissmueller
S
,
Morris
JP
4th
, et al
.
A combinatorial strategy for treating KRAS-mutant lung cancer
.
Nature.
2016
;
534
(
7609
):
647
-
651
.
35.
Assi
SA
,
Bonifer
C
,
Cockerill
PN
.
Rewiring of the transcription factor network in acute myeloid leukemia
.
Cancer Inform.
2019
;
18
:
1176935119859863
.
36.
Assi
SA
,
Imperato
MR
,
Coleman
DJL
, et al
.
Subtype-specific regulatory network rewiring in acute myeloid leukemia
.
Nat Genet.
2019
;
51
(
1
):
151
-
162
.
37.
Green
MR
,
Rodig
S
,
Juszczynski
P
, et al
.
Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy
.
Clin Cancer Res.
2012
;
18
(
6
):
1611
-
1618
.
38.
Wang
H
,
Fu
C
,
Du
J
, et al
.
Enhanced histone H3 acetylation of the PD-L1 promoter via the COP1/c-Jun/HDAC3 axis is required for PD-L1 expression in drug-resistant cancer cells
.
J Exp Clin Cancer Res.
2020
;
39
(
1
):
29
.
You do not currently have access to this content.

Sign in via your Institution