More than 100 years ago, Duke transfused whole blood to a patient with thrombocytopenia to raise the platelet count and prevent bleeding. Since then, platelet transfusions have undergone numerous modifications from whole blood–derived platelet-rich plasma to apheresis-derived platelet concentrates. The storage time and temperature have also changed. The mandate to store platelets for a maximum of 5 to 7 days at room temperature has been challenged by recent clinical trial data, ongoing difficulties with transfusion-transmitted infections, and recurring periods of shortages that were further exacerbated by the COVID-19 pandemic. Alternative platelet storage approaches are as old as the first platelet transfusions. Cold-stored platelets may offer increased storage times (days) and improved hemostatic potential at the expense of reduced circulation time. Frozen (cryopreserved) platelets extend the storage time to years but require storage at −80°C and thawing before transfusion. Lyophilized platelets can be powder-stored for years at room temperature and reconstituted within minutes in sterile water but are probably the least explored alternative platelet product to date. Finally, whole blood offers the hemostatic spectrum of all blood components but has challenges such as ABO incompatibility. We know more than ever before about the in vitro properties of these products, and clinical trial data are accumulating. The purpose of this review is to summarize the findings of recent preclinical and clinical studies on alternative, donor-derived platelet products.

1.
Jones
JM
,
Sapiano
MRP
,
Savinkina
AA
, et al
.
Slowing decline in blood collection and transfusion in the United States – 2017
.
Transfusion.
2020
;
60
(
suppl 2
):
S1
-
S9
.
2.
Jones
JM
,
Sapiano
MRP
,
Mowla
S
,
Bota
D
,
Berger
JJ
,
Basavaraju
SV
.
Has the trend of declining blood transfusions in the United States ended? Findings of the 2019 National Blood Collection and Utilization Survey
.
Transfusion.
2021
;
61
(
suppl 2
):
S1
-
S10
.
3.
Doughty
H
,
Green
L
,
Callum
J
,
Murphy
MF
;
National Blood Transfusion Committee
.
Triage tool for the rationing of blood for massively bleeding patients during a severe national blood shortage: guidance from the National Blood Transfusion Committee
.
Br J Haematol.
2020
;
191
(
3
):
340
-
346
.
4.
Jacobs
MR
.
FDA guidance on bacterial contamination risk control strategies to enhance the safety and availability of platelets: advantages and limitations
.
Ann Blood.
2021
;
6
:18.
5.
Association for the Advancement of Blood & Biotherapies (AABB)
.
Impact of the FDA Guidance “Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion.”
AABB Association Bulletin #21-02.2021. https://www.aabb.org/docs/default-source/default-document-library/resources/association-bulletins/ab21-02.pdf?sfvrsn=6c304e60. Accessed 9 April 2022.
6.
Silva
VA
,
Miller
WV
.
Platelet transfusion survey in a regional blood program
.
Transfusion.
1977
;
17
(
3
):
255
-
260
.
7.
Currie
LM
,
Harper
JR
,
Allan
H
,
Connor
J
.
Inhibition of cytokine accumulation and bacterial growth during storage of platelet concentrates at 4 degrees C with retention of in vitro functional activity
.
Transfusion.
1997
;
37
(
1
):
18
-
24
.
8.
Murphy
S
,
Gardner
FH
.
Effect of storage temperature on maintenance of platelet viability – deleterious effect of refrigerated storage
.
N Engl J Med.
1969
;
280
(
20
):
1094
-
1098
.
9.
Gottschall
J
,
Wu
Y
,
Triulzi
D
, et al;
NHLBI Recipient Epidemiology and Donor Evaluation (REDS-III) Study
.
The epidemiology of platelet transfusions: an analysis of platelet use at 12 US hospitals
.
Transfusion.
2020
;
60
(
1
):
46
-
53
.
10.
Department of Health and Human Services
.
The 2011 National Blood Collection and Utilization Survey Report
.
2011
. https://www.hhs.gov/sites/default/files/ash/bloodsafety/2011-nbcus.pdf. Accessed 9 April 2022.
11.
Charlton
A
,
Wallis
J
,
Robertson
J
,
Watson
D
,
Iqbal
A
,
Tinegate
H
.
Where did platelets go in 2012? A survey of platelet transfusion practice in the North of England
.
Transfus Med.
2014
;
24
(
4
):
213
-
218
.
12.
Estcourt
LJ
.
Why has demand for platelet components increased? A review
.
Transfus Med.
2014
;
24
(
5
):
260
-
268
.
13.
Estcourt
LJ
,
Birchall
J
,
Lowe
D
,
Grant-Casey
J
,
Rowley
M
,
Murphy
MF
.
Platelet transfusions in haematology patients: are we using them appropriately?
Vox Sang.
2012
;
103
(
4
):
284
-
293
.
14.
Aster
RH
.
How platelet transfusions were invented
.
Transfusion.
2021
;
61
(
12
):
3483
-
3486
.
15.
Cancelas
JA
.
Future of platelet formulations with improved clotting profile: a short review on human safety and efficacy data
.
Transfusion.
2019
;
59
(
S2
):
1467
-
1473
.
16.
Kelly
K
,
Cancelas
JA
,
Szczepiorkowski
ZM
,
Dumont
DF
,
Rugg
N
,
Dumont
LJ
.
Frozen platelets-development and future directions
.
Transfus Med Rev.
2020
;
34
(
4
):
286
-
293
.
17.
Bode
AP
,
Fischer
TH
.
Lyophilized platelets: fifty years in the making
.
Artif Cells Blood Substit Immobil Biotechnol.
2007
;
35
(
1
):
125
-
133
.
18.
Rebulla
P
,
Finazzi
G
,
Marangoni
F
, et al
.
The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto
.
N Engl J Med.
1997
;
337
(
26
):
1870
-
1875
.
19.
Uhl
L
,
Assmann
SF
,
Hamza
TH
,
Harrison
RW
,
Gernsheimer
T
,
Slichter
SJ
.
Laboratory predictors of bleeding and the effect of platelet and RBC transfusions on bleeding outcomes in the PLADO trial
.
Blood.
2017
;
130
(
10
):
1247
-
1258
.
20.
Josephson
CD
,
Granger
S
,
Assmann
SF
, et al
.
Bleeding risks are higher in children versus adults given prophylactic platelet transfusions for treatment-induced hypoproliferative thrombocytopenia
.
Blood.
2012
;
120
(
4
):
748
-
760
.
21.
Stanworth
SJ
,
Estcourt
LJ
,
Powter
G
, et al;
TOPPS Investigators
.
A no-prophylaxis platelet-transfusion strategy for hematologic cancers
.
N Engl J Med.
2013
;
368
(
19
):
1771
-
1780
.
22.
Wandt
H
,
Schaefer-Eckart
K
,
Wendelin
K
, et al;
Study Alliance Leukemia
.
Therapeutic platelet transfusion versus routine prophylactic transfusion in patients with haematological malignancies: an open-label, multicentre, randomised study
.
Lancet.
2012
;
380
(
9850
):
1309
-
1316
.
23.
Serraino
GF
,
Murphy
GJ
.
Routine use of viscoelastic blood tests for diagnosis and treatment of coagulopathic bleeding in cardiac surgery: updated systematic review and meta-analysis
.
Br J Anaesth.
2017
;
118
(
6
):
823
-
833
.
24.
Baimukanova
G
,
Miyazawa
B
,
Potter
DR
, et al
.
The effects of 22°C and 4°C storage of platelets on vascular endothelial integrity and function
.
Transfusion.
2016
;
56
(
suppl 1
):
S52
-
S64
.
25.
Kleinveld
DJB
,
Sloos
PH
,
Noorman
F
, et al
.
The use of cryopreserved platelets in a trauma-induced hemorrhage model
.
Transfusion.
2020
;
60
(
9
):
2079
-
2089
.
26.
Trivedi
A
,
Potter
DR
,
Miyazawa
BY
, et al
.
Freeze-dried platelets promote clot formation, attenuate endothelial cell permeability, and decrease pulmonary vascular leak in a murine model of hemorrhagic shock
.
J Trauma Acute Care Surg.
2021
;
90
(
2
):
203
-
214
.
27.
Curley
A
,
Stanworth
SJ
,
Willoughby
K
, et al;
PlaNeT2 MATISSE Collaborators
.
Randomized trial of platelet-transfusion thresholds in neonates
.
N Engl J Med.
2019
;
380
(
3
):
242
-
251
.
28.
Baharoglu
MI
,
Cordonnier
C
,
Al-Shahi Salman
R
, et al;
PATCH Investigators
.
Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial
.
Lancet.
2016
;
387
(
10038
):
2605
-
2613
.
29.
Goel
R
,
Ness
PM
,
Takemoto
CM
,
Krishnamurti
L
,
King
KE
,
Tobian
AA
.
Platelet transfusions in platelet consumptive disorders are associated with arterial thrombosis and in-hospital mortality
.
Blood.
2015
;
125
(
9
):
1470
-
1476
.
30.
Reddoch
KM
,
Pidcoke
HF
,
Montgomery
RK
, et al
.
Hemostatic function of apheresis platelets stored at 4°C and 22°C
.
Shock.
2014
;
41
(
suppl 1
):
54
-
61
.
31.
Reddoch
KM
,
Montgomery
RK
,
Rodriguez
AC
, et al
.
Endothelium-derived inhibitors efficiently attenuate the aggregation and adhesion responses of refrigerated platelets
.
Shock.
2016
;
45
(
2
):
220
-
227
.
32.
Montgomery
RK
,
Reddoch
KM
,
Evani
SJ
,
Cap
AP
,
Ramasubramanian
AK
.
Enhanced shear-induced platelet aggregation due to low-temperature storage
.
Transfusion.
2013
;
53
(
7
):
1520
-
1530
.
33.
Winokur
R
,
Hartwig
JH
.
Mechanism of shape change in chilled human platelets
.
Blood.
1995
;
85
(
7
):
1796
-
1804
.
34.
White
JG
,
Krumwiede
M
.
Influence of cytochalasin B on the shape change induced in platelets by cold
.
Blood.
1973
;
41
(
6
):
823
-
832
.
35.
White
JG
.
Influence of taxol on the response of platelets to chilling
.
Am J Pathol.
1982
;
108
(
2
):
184
-
195
.
36.
White
JG
,
Krivit
W
.
An ultrastructural basis for the shape changes induced in platelets by chilling
.
Blood.
1967
;
30
(
5
):
625
-
635
.
37.
Hoffmeister
KM
,
Falet
H
,
Toker
A
,
Barkalow
KL
,
Stossel
TP
,
Hartwig
JH
.
Mechanisms of cold-induced platelet actin assembly
.
J Biol Chem.
2001
;
276
(
27
):
24751
-
24759
.
38.
Oliver
AE
,
Tablin
F
,
Walker
NJ
,
Crowe
JH
.
The internal calcium concentration of human platelets increases during chilling
.
Biochim Biophys Acta.
1999
;
1416
(
1-2
):
349
-
360
.
39.
Maurer-Spurej
E
,
Pfeiler
G
,
Maurer
N
,
Lindner
H
,
Glatter
O
,
Devine
DV
.
Room temperature activates human blood platelets
.
Lab Invest.
2001
;
81
(
4
):
581
-
592
.
40.
Bynum
JA
,
Meledeo
MA
,
Getz
TM
, et al
.
Bioenergetic profiling of platelet mitochondria during storage: 4°C storage extends platelet mitochondrial function and viability
.
Transfusion.
2016
;
56
(
suppl 1
):
S76
-
S84
.
41.
Stolla
M
,
Bailey
SL
,
Fang
L
, et al
.
Effects of storage time prolongation on in vivo and in vitro characteristics of 4°C-stored platelets
.
Transfusion.
2020
;
60
(
3
):
613
-
621
.
42.
Hegde
S
,
Wellendorf
AM
,
Zheng
Y
,
Cancelas
JA
.
Antioxidant prevents clearance of hemostatically competent platelets after long-term cold storage
.
Transfusion.
2021
;
61
(
2
):
557
-
567
.
43.
Ferrer
F
,
Rivera
J
,
Lozano
ML
,
Corral
J
,
García
VV
.
Effect of cold-storage in the accumulation of bioreactive substances in platelet concentrates treated with second messenger effects
.
Haematologica.
2001
;
86
(
5
):
530
-
536
.
44.
Gottschall
JL
,
Rzad
L
,
Aster
RH
.
Studies of the minimum temperature at which human platelets can be stored with full maintenance of viability
.
Transfusion.
1986
;
26
(
5
):
460
-
462
.
45.
Hoffmeister
KM
,
Felbinger
TW
,
Falet
H
, et al
.
The clearance mechanism of chilled blood platelets
.
Cell.
2003
;
112
(
1
):
87
-
97
.
46.
Chen
W
,
Druzak
SA
,
Wang
Y
, et al
.
Refrigeration-induced binding of von Willebrand factor facilitates fast clearance of refrigerated platelets
.
Arterioscler Thromb Vasc Biol.
2017
;
37
(
12
):
2271
-
2279
.
47.
Rumjantseva
V
,
Grewal
PK
,
Wandall
HH
, et al
.
Dual roles for hepatic lectin receptors in the clearance of chilled platelets
.
Nat Med.
2009
;
15
(
11
):
1273
-
1280
.
48.
Deng
W
,
Xu
Y
,
Chen
W
, et al
.
Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor
.
Nat Commun.
2016
;
7
:
12863
.
49.
Chen
W
,
Voos
KM
,
Josephson
CD
,
Li
R
.
Short-acting anti-VWF (von Willebrand factor) aptamer improves the recovery, survival, and hemostatic functions of refrigerated platelets
.
Arterioscler Thromb Vasc Biol.
2019
;
39
(
10
):
2028
-
2037
.
50.
Josefsson
EC
,
Gebhard
HH
,
Stossel
TP
,
Hartwig
JH
,
Hoffmeister
KM
.
The macrophage alphaMbeta2 integrin alphaM lectin domain mediates the phagocytosis of chilled platelets
.
J Biol Chem.
2005
;
280
(
18
):
18025
-
18032
.
51.
Hoffmeister
KM
,
Josefsson
EC
,
Isaac
NA
,
Clausen
H
,
Hartwig
JH
,
Stossel
TP
.
Glycosylation restores survival of chilled blood platelets
.
Science.
2003
;
301
(
5639
):
1531
-
1534
.
52.
Wandall
HH
,
Hoffmeister
KM
,
Sørensen
AL
, et al
.
Galactosylation does not prevent the rapid clearance of long-term, 4 degrees C-stored platelets
.
Blood.
2008
;
111
(
6
):
3249
-
3256
.
53.
Rumjantseva
V
,
Hoffmeister
KM
.
Novel and unexpected clearance mechanisms for cold platelets
.
Transfus Apheresis Sci.
2010
;
42
(
1
):
63
-
70
.
54.
McGill
M
.
Temperature cycling preserves platelet shape and enhances in vitro test scores during storage at 4 degrees
.
J Lab Clin Med.
1978
;
92
(
6
):
971
-
982
.
55.
Vostal
JG
,
Gelderman
MP
,
Skripchenko
A
, et al
.
Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers
.
Transfusion.
2018
;
58
(
1
):
25
-
33
.
56.
Valeri
CR
.
Circulation and hemostatic effectiveness of platelets stored at 4 C or 22 C: studies in aspirin-treated normal volunteers
.
Transfusion.
1976
;
16
(
1
):
20
-
23
.
57.
Filip
DJ
,
Aster
RH
.
Relative hemostatic effectiveness of human platelets stored at 4 degrees and 22 degrees C
.
J Lab Clin Med.
1978
;
91
(
4
):
618
-
624
.
58.
Becker
GA
,
Tuccelli
M
,
Kunicki
T
,
Chalos
MK
,
Aster
RH
.
Studies of platelet concentrates stored at 22 C and 4 C
.
Transfusion.
1973
;
13
(
2
):
61
-
68
.
59.
Slichter
SJ
,
Harker
LA
.
Preparation and storage of platelet concentrates. II. Storage variables influencing platelet viability and function
.
Br J Haematol.
1976
;
34
(
3
):
403
-
419
.
60.
Stolla
M
,
Fitzpatrick
L
,
Gettinger
I
, et al
.
In vivo viability of extended 4°C-stored autologous apheresis platelets
.
Transfusion.
2018
;
58
(
10
):
2407
-
2413
.
61.
Getz
TM
,
Montgomery
RK
,
Bynum
JA
,
Aden
JK
,
Pidcoke
HF
,
Cap
AP
.
Storage of platelets at 4°C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses
.
Transfusion.
2016
;
56
(
6
):
1320
-
1328
.
62.
Reddoch-Cardenas
KM
,
Montgomery
RK
,
Lafleur
CB
,
Peltier
GC
,
Bynum
JA
,
Cap
AP
.
Cold storage of platelets in platelet additive solution: an in vitro comparison of two Food and Drug Administration-approved collection and storage systems
.
Transfusion.
2018
;
58
(
7
):
1682
-
1688
.
63.
Johnson
L
,
Vekariya
S
,
Wood
B
,
Tan
S
,
Roan
C
,
Marks
DC
.
Refrigeration of apheresis platelets in platelet additive solution (PAS-E) supports in vitro platelet quality to maximize the shelf-life
.
Transfusion.
2021
;
61
(
suppl 1
):
S58
-
S67
.
64.
Johnson
L
,
Tan
S
,
Wood
B
,
Davis
A
,
Marks
DC
.
Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions
.
Transfusion.
2016
;
56
(
7
):
1807
-
1818
.
65.
Li
VJ
,
Bailey
SL
,
Miles
J
, et al
.
Effect of bedside filtration on aggregates from cold-stored whole blood-derived platelet-rich plasma and apheresis platelet concentrates
.
Transfusion.
2022
;
62
(
1
):
22
-
27
.
66.
Stubbs
JR
,
Tran
SA
,
Emery
RL
, et al
.
Cold platelets for trauma-associated bleeding: regulatory approval, accreditation approval, and practice implementation-just the “tip of the iceberg”
.
Transfusion.
2017
;
57
(
12
):
2836
-
2844
.
67.
Miles
J
,
Bailey
SL
,
Obenaus
AM
, et al
.
Storage temperature determines platelet GPVI levels and function in mice and humans
.
Blood Adv.
2021
;
5
(
19
):
3839
-
3849
.
68.
Wood
B
,
Padula
MP
,
Marks
DC
,
Johnson
L
.
Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins
.
Transfusion.
2016
;
56
(
10
):
2548
-
2559
.
69.
Strandenes
G
,
Sivertsen
J
,
Bjerkvig
CK
, et al
.
A pilot trial of platelets stored cold versus at room temperature for complex cardiothoracic surgery
.
Anesthesiology.
2020
;
133
(
6
):
1173
-
1183
.
70.
Association for the Advancement of Blood & Biotherapies (AABB)
.
FDA grants STBTC approval to manufacture 14-day cold-stored platelets
.
2020
. https://www.aabb.org/news-resources/news/article/2020/03/13/fda-grants-stbtc-approval-to-manufacture-14-day-cold-stored-platelets. Accessed 9 April 2022.
71.
Magid-Bernstein
J
,
Beaman
CB
,
Carvalho-Poyraz
F
, et al
.
Impacts of ABO-incompatible platelet transfusions on platelet recovery and outcomes after intracerebral hemorrhage
.
Blood.
2021
;
137
(
19
):
2699
-
2703
.
72.
Cardillo
A
,
Heal
JM
,
Henrichs
K
, et al
.
Reducing the need for HLA-matched platelet transfusion
.
N Engl J Med.
2021
;
384
(
25
):
2451
-
2452
.
73.
Balbuena-Merle
R
,
West
FB
,
Tormey
CA
,
Hendrickson
JE
.
Fatal acute hemolytic transfusion reaction due to anti-B from a platelet apheresis unit stored in platelet additive solution
.
Transfusion.
2019
;
59
(
6
):
1911
-
1915
.
74.
Yazer
MH
,
Spinella
PC
,
Bank
EA
, et al
THOR-AABB Working Party Recommendations for a Prehospital Blood Product Transfusion Program, Prehospital Emergency Care. doi:.
75.
Holcomb
JB
,
Tilley
BC
,
Baraniuk
S
, et al;
PROPPR Study Group
.
Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial
.
JAMA.
2015
;
313
(
5
):
471
-
482
.
76.
Guyette
FX
,
Sperry
JL
,
Peitzman
AB
, et al
.
Prehospital blood product and crystalloid resuscitation in the severely injured patient: a secondary analysis of the prehospital air medical plasma trial
.
Ann Surg.
2021
;
273
(
2
):
358
-
364
.
77.
Sperry
JL
,
Guyette
FX
,
Brown
JB
, et al;
PAMPer Study Group
.
Prehospital plasma during air medical transport in trauma patients at risk for hemorrhagic shock
.
N Engl J Med.
2018
;
379
(
4
):
315
-
326
.
78.
Hervig
TA
,
Doughty
HA
,
Cardigan
RA
, et al;
Biomedical Excellence for Safer Transfusion Collaborative
.
Re-introducing whole blood for transfusion: considerations for blood providers
.
Vox Sang.
2021
;
116
(
2
):
167
-
174
.
79.
Mays
JA
,
Hess
JR
.
Modelling the effects of blood component storage lesions on the quality of haemostatic resuscitation in massive transfusion for trauma
.
Blood Transfus.
2017
;
15
(
2
):
153
-
157
.
80.
Dishong
D
,
Cap
AP
,
Holcomb
JB
,
Triulzi
DJ
,
Yazer
MH
.
The rebirth of the cool: a narrative review of the clinical outcomes of cold stored low titer group O whole blood recipients compared to conventional component recipients in trauma
.
Hematology.
2021
;
26
(
1
):
601
-
611
.
81.
Association for the Advancement of Blood & Biotherapies (AABB)
.
AABB Standards for Blood Banks and Transfusion Services
, 32nd ed.
Bethesda, MD
:
AABB
;
2020
.
82.
Bjerkvig
C
,
Sivertsen
J
,
Braathen
H
, et al
.
Cold-stored whole blood in a Norwegian emergency helicopter service: an observational study on storage conditions and product quality
.
Transfusion.
2020
;
60
(
7
):
1544
-
1551
.
83.
Sivertsen
J
,
Braathen
H
,
Lunde
THF
, et al
.
Cold-stored leukoreduced CPDA-1 whole blood: in vitro quality and hemostatic properties
.
Transfusion.
2020
;
60
(
5
):
1042
-
1049
.
84.
Ekaney
ML
,
Gray
GG
,
McKillop
IH
,
Evans
SL
.
Enhanced platelet function in cold stored whole blood supplemented with resveratrol or cytochrome C
.
J Trauma Acute Care Surg.
2018
;
85
(
1S suppl 2
):
S92
-
S97
.
85.
Strandenes
G
,
Austlid
I
,
Apelseth
TO
, et al
.
Coagulation function of stored whole blood is preserved for 14 days in austere conditions: a ROTEM feasibility study during a Norwegian antipiracy mission and comparison to equal ratio reconstituted blood
.
J Trauma Acute Care Surg.
2015
;
78
(
6 suppl 1
):
S31
-
S38
.
86.
Pidcoke
HF
,
McFaul
SJ
,
Ramasubramanian
AK
, et al
.
Primary hemostatic capacity of whole blood: a comprehensive analysis of pathogen reduction and refrigeration effects over time
.
Transfusion.
2013
;
53
(
suppl 1
):
137S
-
149S
.
87.
Hughes
JD
,
Macdonald
VW
,
Hess
JR
.
Warm storage of whole blood for 72 hours
.
Transfusion.
2007
;
47
(
11
):
2050
-
2056
.
88.
Thomas
KA
,
Shea
SM
,
Yazer
MH
,
Spinella
PC
.
Effect of leukoreduction and pathogen reduction on the hemostatic function of whole blood
.
Transfusion.
2019
;
59
(
S2
):
1539
-
1548
.
89.
Huish
S
,
Green
L
,
Kempster
C
, et al
.
A comparison of platelet function in cold-stored whole blood and platelet concentrates
.
Transfusion.
2021
;
61
(
11
):
3224
-
3235
.
90.
Slichter
SJ
,
Fitzpatrick
L
,
Osborne
B
, et al
.
Platelets stored in whole blood at 4°C: in vivo posttransfusion platelet recoveries and survivals and in vitro hemostatic function
.
Transfusion.
2019
;
59
(
6
):
2084
-
2092
.
91.
Paunovic
D
,
van der Meer
P
,
Kjeldsen-Kragh
J
, et al
.
Multicenter evaluation of a whole-blood filter that saves platelets
.
Transfusion.
2004
;
44
(
8
):
1197
-
1203
.
92.
Remy
KE
,
Yazer
MH
,
Saini
A
, et al
.
Effects of platelet-sparing leukocyte reduction and agitation methods on in vitro measures of hemostatic function in cold-stored whole blood
.
J Trauma Acute Care Surg.
2018
;
84
(
6S suppl 1
):
S104
-
S114
.
93.
Lozano
ML
,
Pérez-Ceballos
E
,
Rivera
J
,
Paunovic
D
,
Candela
MJ
,
Vicente
V
.
Evaluation of a new whole-blood filter that allows preparation of platelet concentrates by platelet-rich plasma methods
.
Transfusion.
2003
;
43
(
12
):
1723
-
1728
.
94.
Huish
S
,
Green
L
,
Curnow
E
,
Wiltshire
M
,
Cardigan
R
.
Effect of storage of plasma in the presence of red blood cells and platelets: re-evaluating the shelf life of whole blood
.
Transfusion.
2019
;
59
(
11
):
3468
-
3477
.
95.
Haddaway
K
,
Bloch
EM
,
Tobian
AAR
, et al
.
Hemostatic properties of cold-stored whole blood leukoreduced using a platelet-sparing versus a non-platelet-sparing filter
.
Transfusion.
2019
;
59
(
5
):
1809
-
1817
.
96.
Bailey
SL
,
Fang
LY
,
Fitzpatrick
L
,
Byrne
D
,
Pellham
E
,
Stolla
M
.
In vitro and in vivo effects of short-term cold storage of platelets in PAS-C
.
Haematologica.
2022
;
107
(
4
):
988
-
990
.
97.
Duke
WW
.
The relation of blood platelets to hemorrhagic disease. By W.W. Duke
.
JAMA.
1983
;
250
(
9
):
1201
-
1209
.
98.
Byrnes
JR
,
Wolberg
AS
.
Red blood cells in thrombosis
.
Blood.
2017
;
130
(
16
):
1795
-
1799
.
99.
Walton
BL
,
Lehmann
M
,
Skorczewski
T
, et al
.
Elevated hematocrit enhances platelet accumulation following vascular injury
.
Blood.
2017
;
129
(
18
):
2537
-
2546
.
100.
Rubin
O
,
Crettaz
D
,
Canellini
G
,
Tissot
JD
,
Lion
N
.
Microparticles in stored red blood cells: an approach using flow cytometry and proteomic tools
.
Vox Sang.
2008
;
95
(
4
):
288
-
297
.
101.
Saito
S
,
Nollet
KE
,
Ngoma
AM
,
Ono
T
,
Ohto
H
.
Platelet-, leucocyte- and red cell-derived microparticles in stored whole blood, with and without leucofiltration, with and without ionising radiation
.
Blood Transfus.
2018
;
16
(
2
):
145
-
153
.
102.
Williams
J
,
Merutka
N
,
Meyer
D
, et al
.
Safety profile and impact of low-titer group O whole blood for emergency use in trauma
.
J Trauma Acute Care Surg.
2020
;
88
(
1
):
87
-
93
.
103.
Harrold
IM
,
Seheult
JN
,
Alarcon
LH
, et al
.
Hemolytic markers following the transfusion of uncrossmatched, cold-stored, low-titer, group O+ whole blood in civilian trauma patients
.
Transfusion.
2020
;
60
(
suppl 3
):
S24
-
S30
.
104.
Yazer
MH
,
Spinella
PC
,
Doyle
L
, et al;
Biomedical Excellence for Safer Transfusion Collaborative*
.
Transfusion of uncrossmatched group O erythrocyte-containing products does not interfere with most ABO typings
.
Anesthesiology.
2020
;
132
(
3
):
525
-
534
.
105.
Geneen
LJ
,
Brunskill
SJ
,
Doree
C
,
Estcourt
LJ
,
Green
L
.
The difference in potential harms between whole blood and component blood transfusion in major bleeding: a rapid systematic review and meta-analysis of RCTs
.
Transfus Med Rev.
2022
;
36
(
1
):
7
-
15
.
106.
Martinaud
C
,
Tiberghien
P
,
Bégué
S
, et al
.
Rationale and design of the T-STORHM Study: a prospective randomized trial comparing fresh whole blood to blood components for acutely bleeding trauma patients
.
Transfus Clin Biol.
2019
;
26
(
4
):
198
-
201
.
107.
Klein
E
,
Toch
R
,
Farber
S
,
Freeman
G
,
Fiorentino
R
.
Hemostasis in thrombocytopenic bleeding following infusion of stored, frozen platelets
.
Blood.
1956
;
11
(
8
):
693
-
699
.
108.
Valeri
CR
,
Feingold
H
,
Marchionni
LD
.
A simple method for freezing human platelets using 6 per cent dimethylsulfoxide and storage at −80 degrees C
.
Blood.
1974
;
43
(
1
):
131
-
136
.
109.
Valeri
CR
,
Ragno
G
,
Khuri
S
.
Freezing human platelets with 6 percent dimethyl sulfoxide with removal of the supernatant solution before freezing and storage at -80 degrees C without postthaw processing
.
Transfusion.
2005
;
45
(
12
):
1890
-
1898
.
110.
Reade
MC
,
Marks
DC
,
Bellomo
R
, et al;
Cryopreserved vs Liquid Platelet (CLIP) Investigators, the Australian and New Zealand College of Anaesthetists Clinical Trials Network, and the Australian and New Zealand Intensive Care Society Clinical Trials Group
.
A randomized, controlled pilot clinical trial of cryopreserved platelets for perioperative surgical bleeding: the CLIP-I trial (Editorial, p. 2759)
.
Transfusion.
2019
;
59
(
9
):
2794
-
2804
.
111.
Barnard
MR
,
MacGregor
H
,
Ragno
G
, et al
.
Fresh, liquid-preserved, and cryopreserved platelets: adhesive surface receptors and membrane procoagulant activity
.
Transfusion.
1999
;
39
(
8
):
880
-
888
.
112.
Dumont
LJ
,
Cancelas
JA
,
Dumont
DF
, et al
.
A randomized controlled trial evaluating recovery and survival of 6% dimethyl sulfoxide-frozen autologous platelets in healthy volunteers
.
Transfusion.
2013
;
53
(
1
):
128
-
137
.
113.
Wood
B
,
Padula
MP
,
Marks
DC
,
Johnson
L
.
Cryopreservation alters the immune characteristics of platelets
.
Transfusion.
2021
;
61
(
12
):
3432
-
3442
.
114.
Lelkens
CC
,
Koning
JG
,
de Kort
B
,
Floot
IB
,
Noorman
F
.
Experiences with frozen blood products in the Netherlands military
.
Transfus Apheresis Sci.
2006
;
34
(
3
):
289
-
298
.
115.
Noorman
F
,
van Dongen
TT
,
Plat
MJ
,
Badloe
JF
,
Hess
JR
,
Hoencamp
R
.
Transfusion: −80°C frozen blood products are safe and effective in military casualty care
.
PLoS One.
2016
;
11
(
12
):
e0168401
.
116.
Bohonek
M
,
Seghatchian
J
.
Emergency supply policy of cryopreserved RBC and PLT: the Czech Republic concept
.
Transfus Apheresis Sci.
2020
;
59
(
3
):
102788
.
117.
Bohonek
M
,
Kutac
D
,
Landova
L
, et al
.
The use of cryopreserved platelets in the treatment of polytraumatic patients and patients with massive bleeding
.
Transfusion.
2019
;
59
(
S2
):
1474
-
1478
.
118.
Khuri
SF
,
Healey
N
,
MacGregor
H
, et al
.
Comparison of the effects of transfusions of cryopreserved and liquid-preserved platelets on hemostasis and blood loss after cardiopulmonary bypass
.
J Thorac Cardiovasc Surg.
1999
;
117
(
1
):
172
-
183
.
119.
Slichter
SJ
,
Dumont
LJ
,
Cancelas
JA
, et al
.
Safety and efficacy of cryopreserved platelets in bleeding patients with thrombocytopenia
.
Transfusion.
2018
;
58
(
9
):
2129
-
2138
.
120.
Six
KR
,
Delabie
W
,
Devreese
KMJ
, et al
.
Comparison between manufacturing sites shows differential adhesion, activation, and GPIbα expression of cryopreserved platelets
.
Transfusion.
2018
;
58
(
11
):
2645
-
2656
.
121.
McGuinness
S
,
Charlewood
R
,
Gilder
E
, et al
.
A pilot randomized clinical trial of cryopreserved versus liquid-stored platelet transfusion for bleeding in cardiac surgery: the cryopreserved versus liquid platelet-New Zealand pilot trial
.
Vox Sang.
2022
;
117
(
3
):
337
-
345
.
122.
Johnson
L
,
Coorey
CP
,
Marks
DC
.
The hemostatic activity of cryopreserved platelets is mediated by phosphatidylserine-expressing platelets and platelet microparticles
.
Transfusion.
2014
;
54
(
8
):
1917
-
1926
.
123.
Slichter
SJ
,
Jones
M
,
Ransom
J
, et al
.
Review of in vivo studies of dimethyl sulfoxide cryopreserved platelets
.
Transfus Med Rev.
2014
;
28
(
4
):
212
-
225
.
124.
Wolkers
WF
,
Walker
NJ
,
Tablin
F
,
Crowe
JH
.
Human platelets loaded with trehalose survive freeze-drying
.
Cryobiology.
2001
;
42
(
2
):
79
-
87
.
125.
Macko
AR
,
Crossland
RF
,
Cap
AP
, et al
.
Control of severe intra-abdominal hemorrhage with an infusible platelet-derived hemostatic agent in a nonhuman primate (rhesus macaque) model
.
J Trauma Acute Care Surg.
2016
;
80
(
4
):
617
-
624
.
126.
Hawksworth
JS
,
Elster
EA
,
Fryer
D
, et al
.
Evaluation of lyophilized platelets as an infusible hemostatic agent in experimental non-compressible hemorrhage in swine
.
J Thromb Haemost.
2009
;
7
(
10
):
1663
-
1671
.
127.
Burdette
AJ
,
Andrew Pratt
G
III
,
Campagna
MV
,
Sheppard
FR
.
Evaluation of a new generation platelet-derived hemostatic agent in a rabbit thrombocytopenic model
.
Thromb Res.
2017
;
158
:
79
-
82
.
128.
Crowe
LM
,
Crowe
JH
,
Rudolph
A
,
Womersley
C
,
Appel
L
.
Preservation of freeze-dried liposomes by trehalose
.
Arch Biochem Biophys.
1985
;
242
(
1
):
240
-
247
.
129.
Fitzpatrick
GM
.
Novel platelet products under development for the treatment of thrombocytopenia or acute hemorrhage
.
Transfus Apheresis Sci.
2019
;
58
(
1
):
7
-
11
.
130.
Ohanian
M
,
Cancelas
JA
,
Davenport
R
, et al
.
Freeze-dried platelets are a promising alternative in bleeding thrombocytopenic patients with hematological malignancies
.
Am J Hematol.
2022
;
97
(
3
):
256
-
266
.
131.
Joshi
NV
,
Raftis
JB
,
Lucking
AJ
, et al
.
Lyophilised reconstituted human platelets increase thrombus formation in a clinical ex vivo model of deep arterial injury
.
Thromb Haemost.
2012
;
108
(
1
):
176
-
182
.
132.
Bynum
JA
,
Meledeo
MA
,
Peltier
GC
, et al
.
Evaluation of a lyophilized platelet-derived hemostatic product
.
Transfusion.
2019
;
59
(
S2
):
1490
-
1498
.
133.
Fitzpatrick
GM
,
Cliff
R
,
Tandon
N
.
Thrombosomes: a platelet-derived hemostatic agent for control of noncompressible hemorrhage
.
Transfusion.
2013
;
53
(
suppl 1
):
100S
-
106S
.
134.
Fitzpatrick
G
,
Vibhudatta
A
,
Agashe
H
, et al
Trehalose stabilized freeze dried human platelets, thrombosomes persist in circulation 24 hours after infusion and are non-immunogenic in New Zealand white rabbits.
Vox Sang.
2010
;
99
(
suppl P-0454
):
172
135.
Inaba
K
,
Barmparas
G
,
Rhee
P
, et al
.
Dried platelets in a swine model of liver injury
.
Shock.
2014
;
41
(
5
):
429
-
434
.
136.
Barroso
J
,
Osborne
B
,
Teramura
G
, et al
.
Safety evaluation of a lyophilized platelet-derived hemostatic product
.
Transfusion.
2018
;
58
(
12
):
2969
-
2977
.
137.
Margraf
A
,
Nussbaum
C
,
Rohwedder
I
, et al
.
Maturation of platelet function during murine fetal development in vivo
.
Arterioscler Thromb Vasc Biol.
2017
;
37
(
6
):
1076
-
1086
.
138.
Stolla
MC
,
Catherman
SC
,
Kingsley
PD
, et al
.
Lin28b regulates age-dependent differences in murine platelet function
.
Blood Adv.
2019
;
3
(
1
):
72
-
82
.
139.
Feng
Q
,
Shabrani
N
,
Thon
JN
, et al
.
Scalable generation of universal platelets from human induced pluripotent stem cells
.
Stem Cell Reports.
2014
;
3
(
5
):
817
-
831
.
140.
Figueiredo
C
,
Blasczyk
R
.
Generation of HLA universal megakaryocytes and platelets by genetic engineering
.
Front Immunol.
2021
;
12
:
768458
.
141.
Hillyer
CD
,
Josephson
CD
,
Blajchman
MA
,
Vostal
JG
,
Epstein
JS
,
Goodman
JL
.
Bacterial contamination of blood components: risks, strategies, and regulation: joint ASH and AABB educational session in transfusion medicine
.
Hematology Am Soc Hematol Educ Program.
2003
;
2003
:
575
-
589
.
142.
Ramirez-Arcos
S
,
Kou
Y
,
Kumaran
D
, et al
.
Assessment of bacterial growth in leukoreduced cold-stored whole blood supports overnight hold at room temperature prior to filtration: a pilot study
.
Vox Sang.
2022
;
117
(
5
):
678
-
684
.
143.
Ketter
PM
,
Kamucheka
R
,
Arulanandam
B
,
Akers
K
,
Cap
AP
.
Platelet enhancement of bacterial growth during room temperature storage: mitigation through refrigeration
.
Transfusion.
2019
;
59
(
S2
):
1479
-
1489
.
144.
Brown
BL
,
Wagner
SJ
,
Hapip
CA
, et al
.
Time from apheresis platelet donation to cold storage: evaluation of platelet quality and bacterial growth
.
Transfusion.
2022
;
62
(
2
):
439
-
447
.
You do not currently have access to this content.
Sign in via your Institution