• Aberrant activation of the bone morphogenetic protein/SMAD pathway is a key mediator of p53 mutant LT of MPNs.

  • Genomic instability and DNA damage characterize p53 mutant LT of MPNs, rendering this leukemia sensitive to DNA damage repair inhibitors.

Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.

1.
James
C
,
Ugo
V
,
Le Couédic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature.
2005
;
434
(
7037
):
1144
-
1148
.
2.
Levine
RL
,
Wadleigh
M
,
Cools
J
, et al
.
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
.
Cancer Cell.
2005
;
7
(
4
):
387
-
397
.
3.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al;
Cancer Genome Project
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet.
2005
;
365
(
9464
):
1054
-
1061
.
4.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med.
2005
;
352
(
17
):
1779
-
1790
.
5.
Mesa
RA
,
Li
CY
,
Ketterling
RP
,
Schroeder
GS
,
Knudson
RA
,
Tefferi
A
.
Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases
.
Blood.
2005
;
105
(
3
):
973
-
977
.
6.
Chihara
D
,
Kantarjian
HM
,
Newberry
KJ
, et al
.
Survival outcome of patients with acute myeloid leukemia transformed from myeloproliferative neoplasms
.
Blood.
2016
;
128
(
22
):
1940
.
7.
Rampal
R
,
Ahn
J
,
Abdel-Wahab
O
, et al
.
Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms
.
Proc Natl Acad Sci U S A.
2014
;
111
(
50
):
E5401
-
E5410
.
8.
Grinfeld
J
,
Nangalia
J
,
Baxter
EJ
, et al
.
Classification and personalized prognosis in myeloproliferative neoplasms
.
N Engl J Med.
2018
;
379
(
15
):
1416
-
1430
.
9.
Courtier
F
,
Carbuccia
N
,
Garnier
S
, et al
.
Genomic analysis of myeloproliferative neoplasms in chronic and acute phases
.
Haematologica.
2017
;
102
(
1
):
e11
-
e14
.
10.
Harutyunyan
A
,
Klampfl
T
,
Cazzola
M
,
Kralovics
R
.
p53 lesions in leukemic transformation
.
N Engl J Med.
2011
;
364
(
5
):
488
-
490
.
11.
Chernak
BJ
,
Sen
F
,
Farnoud
N
, et al
.
Atypical presentation of erythroid/megakaryocytic leukemic transformation of a myeloproliferative neoplasm associated with mutation and loss of TP53
.
HemaSphere.
2020
;
4
(
4
):
e411
.
12.
Lundberg
P
,
Karow
A
,
Nienhold
R
, et al
.
Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms
.
Blood.
2014
;
123
(
14
):
2220
-
2228
.
13.
Kubesova
B
,
Pavlova
S
,
Malcikova
J
, et al
.
Low-burden TP53 mutations in chronic phase of myeloproliferative neoplasms: association with age, hydroxyurea administration, disease type and JAK2 mutational status
.
Leukemia.
2018
;
32
(
2
):
450
-
461
.
14.
Bernard
E
,
Nannya
Y
,
Hasserjian
RP
, et al
.
Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes
[published corrections appear in Nat Med. 2021;27(3):562 and 2021;27(5):927].
Nat Med.
2020
;
26
(
10
):
1549
-
1556
.
15.
Boettcher
S
,
Miller
PG
,
Sharma
R
, et al
.
A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies
.
Science.
2019
;
365
(
6453
):
599
-
604
.
16.
Mullally
A
,
Lane
SW
,
Ball
B
, et al
.
Physiological Jak2V617F expression causes a lethal myeloproliferative neoplasm with differential effects on hematopoietic stem and progenitor cells
.
Cancer Cell.
2010
;
17
(
6
):
584
-
596
.
17.
Olive
KP
,
Tuveson
DA
,
Ruhe
ZC
, et al
.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome
.
Cell.
2004
;
119
(
6
):
847
-
860
.
18.
Marino
S
,
Vooijs
M
,
van Der Gulden
H
,
Jonkers
J
,
Berns
A
.
Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum
.
Genes Dev.
2000
;
14
(
8
):
994
-
1004
.
19.
Abdel-Wahab
O
,
Gao
J
,
Adli
M
, et al
.
Deletion of Asxl1 results in myelodysplasia and severe developmental defects in vivo
.
J Exp Med.
2013
;
210
(
12
):
2641
-
2659
.
20.
Rampal
RK
,
Pinzon-Ortiz
M
,
Somasundara
AVH
, et al
.
Therapeutic efficacy of combined JAK1/2, Pan-PIM, and CDK4/6 inhibition in myeloproliferative neoplasms
.
Clin Cancer Res.
2021
;
27
(
12
):
3456
-
3468
.
21.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood.
2016
;
127
(
20
):
2391
-
2405
.
22.
Kogan
SC
,
Ward
JM
,
Anver
MR
, et al;
Hematopathology subcommittee of the Mouse Models of Human Cancers Consortium
.
Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice
.
Blood.
2002
;
100
(
1
):
238
-
245
.
23.
Welch
JS
.
Patterns of mutations in TP53 mutated AML
.
Best Pract Res Clin Haematol.
2018
;
31
(
4
):
379
-
383
.
24.
Rieger
MA
,
Smejkal
BM
,
Schroeder
T
.
Improved prospective identification of megakaryocyte-erythrocyte progenitor cells
.
Br J Haematol.
2009
;
144
(
3
):
448
-
451
.
25.
Pronk
CJ
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell.
2007
;
1
(
4
):
428
-
442
.
26.
Ying
QL
,
Nichols
J
,
Chambers
I
,
Smith
A
.
BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3
.
Cell.
2003
;
115
(
3
):
281
-
292
.
27.
Lengerke
C
,
Schmitt
S
,
Bowman
TV
, et al
.
BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway
.
Cell Stem Cell.
2008
;
2
(
1
):
72
-
82
.
28.
Chen
E
,
Ahn
JS
,
Massie
CE
, et al
.
JAK2V617F promotes replication fork stalling with disease-restricted impairment of the intra-S checkpoint response
.
Proc Natl Acad Sci U S A.
2014
;
111
(
42
):
15190
-
15195
.
29.
Amé
JC
,
Spenlehauer
C
,
de Murcia
G
.
The PARP superfamily
.
BioEssays.
2004
;
26
(
8
):
882
-
893
.
30.
Pommier
Y
,
O’Connor
MJ
,
de Bono
J
.
Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action
.
Sci Transl Med.
2016
;
8
(
362
):
362ps17
.
31.
Porter
CC
,
Kim
J
,
Fosmire
S
, et al
.
Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia
.
Leukemia.
2012
;
26
(
6
):
1266
-
1276
.
32.
Guertin
AD
,
Li
J
,
Liu
Y
, et al
.
Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy
.
Mol Cancer Ther.
2013
;
12
(
8
):
1442
-
1452
.
33.
Ghelli Luserna Di Rorà
A
,
Beeharry
N
,
Imbrogno
E
, et al
.
Targeting WEE1 to enhance conventional therapies for acute lymphoblastic leukemia
.
J Hematol Oncol.
2018
;
11
(
1
):
99
.
34.
Fang
Y
,
McGrail
DJ
,
Sun
C
, et al
.
Sequential therapy with PARP and WEE1 inhibitors minimizes toxicity while maintaining efficacy
.
Cancer Cell.
2019
;
35
(
6
):
851
-
867.e7
.
35.
Lallo
A
,
Frese
KK
,
Morrow
CJ
, et al
.
The combination of the PARP inhibitor olaparib and the WEE1 inhibitor AZD1775 as a new therapeutic option for small cell lung cancer
.
Clin Cancer Res.
2018
;
24
(
20
):
5153
-
5164
.
36.
Garcia
TB
,
Snedeker
JC
,
Baturin
D
, et al
.
A small-molecule inhibitor of WEE1, AZD1775, synergizes with olaparib by impairing homologous recombination and enhancing DNA damage and apoptosis in acute leukemia
.
Mol Cancer Ther.
2017
;
16
(
10
):
2058
-
2068
.
37.
O’Connor
MJ
.
Targeting the DNA damage response in cancer
.
Mol Cell.
2015
;
60
(
4
):
547
-
560
.
38.
Rücker
FG
,
Schlenk
RF
,
Bullinger
L
, et al
.
TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome
.
Blood.
2012
;
119
(
9
):
2114
-
2121
.
39.
Rücker
FG
,
Dolnik
A
,
Blätte
TJ
, et al
.
Chromothripsis is linked to TP53 alteration, cell cycle impairment, and dismal outcome in acute myeloid leukemia with complex karyotype
.
Haematologica.
2018
;
103
(
1
):
e17
-
e20
.
40.
Montalban-Bravo
G
,
Benton
CB
,
Wang
SA
, et al
.
More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia
.
Blood.
2017
;
129
(
18
):
2584
-
2587
.
41.
Iacobucci
I
,
Wen
J
,
Meggendorfer
M
, et al
.
Genomic subtyping and therapeutic targeting of acute erythroleukemia
.
Nat Genet.
2019
;
51
(
4
):
694
-
704
.
42.
Weissmueller
S
,
Manchado
E
,
Saborowski
M
, et al
.
Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling
.
Cell.
2014
;
157
(
2
):
382
-
394
.
43.
Schulz-Heddergott
R
,
Stark
N
,
Edmunds
SJ
, et al
.
Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits Stat3-mediated tumor growth and invasion
.
Cancer Cell.
2018
;
34
(
2
):
298
-
314.e7
.
44.
Loizou
E
,
Banito
A
,
Livshits
G
, et al
.
A gain-of-function p53-mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1
.
Cancer Discov.
2019
;
9
(
7
):
962
-
979
.
45.
Lu
YC
,
Sanada
C
,
Xavier-Ferrucio
J
, et al
.
The molecular signature of megakaryocyte-erythroid progenitors reveals a role for the cell cycle in fate specification
[published correction appears in Cell Rep. 2018;25(11):3229].
Cell Rep.
2018
;
25
(
8
):
2083
-
2093.e4
.
46.
Le Goff
S
,
Boussaid
I
,
Floquet
C
, et al
.
p53 activation during ribosome biogenesis regulates normal erythroid differentiation
.
Blood.
2021
;
137
(
1
):
89
-
102
.
47.
Xavier-Ferrucio
J
,
Krause
DS
.
Bipotent megakaryocytic-erythroid progenitors: concepts and controversies
.
Stem Cells.
2018
;
36
(
8
):
1138
-
1145
.
48.
Toofan
P
,
Irvine
D
,
Hopcroft
L
,
Copland
M
,
Wheadon
H
.
The role of the bone morphogenetic proteins in leukaemic stem cell persistence
.
Biochem Soc Trans.
2014
;
42
(
4
):
809
-
815
.
49.
Maguer-Satta
V
,
Bartholin
L
,
Jeanpierre
S
, et al
.
Regulation of human erythropoiesis by activin A, BMP2, and BMP4, members of the TGFbeta family
.
Exp Cell Res.
2003
;
282
(
2
):
110
-
120
.
50.
Gruber
TA
,
Larson Gedman
A
,
Zhang
J
, et al
.
An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia
.
Cancer Cell.
2012
;
22
(
5
):
683
-
697
.
51.
Chau
JF
,
Jia
D
,
Wang
Z
, et al
.
A crucial role for bone morphogenetic protein-Smad1 signalling in the DNA damage response
.
Nat Commun.
2012
;
3
(
1
):
836
.
You do not currently have access to this content.

Sign in via your Institution