• Loss of TP53 increases PD-L1 expression and EV formation from B-cell lymphoma cells.

  • Targeting PD-L1 and suppressing EV release overcomes TP53-mediated resistance to CIT.

Genetic alterations in the DNA damage response (DDR) pathway are a frequent mechanism of resistance to chemoimmunotherapy (CIT) in B-cell malignancies. We have previously shown that the synergy of CIT relies on secretory crosstalk elicited by chemotherapy between the tumor cells and macrophages. Here, we show that loss of multiple different members of the DDR pathway inhibits macrophage phagocytic capacity in vitro and in vivo. Particularly, loss of TP53 led to decreased phagocytic capacity ex vivo across multiple B-cell malignancies. We demonstrate via in vivo cyclophosphamide treatment using the Eμ-TCL1 mouse model that loss of macrophage phagocytic capacity in Tp53-deleted leukemia is driven by a significant downregulation of a phagocytic transcriptomic signature using small conditional RNA sequencing. By analyzing the tumor B-cell proteome, we identified a TP53-specific upregulation of proteins associated with extracellular vesicles (EVs). We abrogated EV biogenesis in tumor B-cells via clustered regularly interspaced short palindromic repeats (CRISPR)-knockout (KO) of RAB27A and confirmed that the EVs from TP53-deleted lymphoma cells were responsible for the reduced phagocytic capacity and the in vivo CIT resistance. Furthermore, we observed that TP53 loss led to an upregulation of both PD-L1 cell surface expression and secretion of EVs by lymphoma cells. Disruption of EV bound PD-L1 by anti–PD-L1 antibodies or PD-L1 CRISPR-KO improved macrophage phagocytic capacity and in vivo therapy response. Thus, we demonstrate enhanced EV release and increased PD-L1 expression in TP53-deficient B-cell lymphomas as novel mechanisms of macrophage function alteration in CIT resistance. This study indicates the use of checkpoint inhibition in the combination treatment of B-cell malignancies with TP53 loss.

1.
Spranger
S
,
Gajewski
TF
.
Impact of oncogenic pathways on evasion of antitumour immune responses
.
Nat Rev Cancer.
2018
;
18
(
3
):
139
-
147
.
2.
Pallasch
CP
,
Leskov
I
,
Braun
CJ
, et al
.
Sensitizing protective tumor microenvironments to antibody-mediated therapy
.
Cell.
2014
;
156
(
3
):
590
-
602
.
3.
Lux
A
,
Seeling
M
,
Baerenwaldt
A
, et al
.
A humanized mouse identifies the bone marrow as a niche with low therapeutic IgG activity
.
Cell Rep.
2014
;
7
(
1
):
236
-
248
.
4.
Qian
BZ
,
Pollard
JW
.
Macrophage diversity enhances tumor progression and metastasis
.
Cell.
2010
;
141
(
1
):
39
-
51
.
5.
Hughes
R
,
Qian
BZ
,
Rowan
C
, et al
.
Perivascular M2 macrophages stimulate tumor relapse after chemotherapy
.
Cancer Res.
2015
;
75
(
17
):
3479
-
3491
.
6.
Lossos
C
,
Liu
Y
,
Kolb
KE
, et al
.
Mechanisms of lymphoma clearance induced by high-dose alkylating agents
.
Cancer Discov.
2019
;
9
(
7
):
944
-
961
.
7.
Roghanian
A
,
Hu
G
,
Fraser
C
, et al
.
Cyclophosphamide enhances cancer antibody immunotherapy in the resistant bone marrow niche by modulating macrophage FcγR expression
.
Cancer Immunol Res.
2019
;
7
(
11
):
1876
-
1890
.
8.
Barbarino
V
,
Henschke
S
,
Blakemore
SJ
, et al
.
Macrophage-mediated antibody dependent effector function in aggressive B-cell lymphoma treatment is enhanced by ibrutinib via inhibition of JAK2
.
Cancers (Basel).
2020
;
12
(
8
):
2303
.
9.
Naicker
SD
,
Feerick
CL
,
Lynch
K
, et al
.
Cyclophosphamide alters the tumor cell secretome to potentiate the anti-myeloma activity of daratumumab through augmentation of macrophage-mediated antibody dependent cellular phagocytosis
.
OncoImmunology.
2021
;
10
(
1
):
1859263
.
10.
Lossos
C
,
Kolb
KE
,
Christie
AL
, et al
.
Alkylating agent-induced ER stress overcomes microenvironmental resistance to lymphoma therapy
.
Cancer Discov.
2019
;
9
(
7
):
944
-
961
.
11.
Coiffier
B
,
Lepage
E
,
Brière
J
, et al
.
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma
.
N Engl J Med.
2002
;
346
(
4
):
235
-
242
.
12.
Hallek
M
,
Fischer
K
,
Fingerle-Rowson
G
, et al;
German Chronic Lymphocytic Leukaemia Study Group
.
Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial
.
Lancet.
2010
;
376
(
9747
):
1164
-
1174
.
13.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes
.
Nat Med.
2018
;
24
(
5
):
679
-
690
.
14.
Wilson
WH
,
Young
RM
,
Schmitz
R
, et al
.
Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma
.
Nat Med.
2015
;
21
(
8
):
922
-
926
.
15.
Ansell
SM
,
Minnema
MC
,
Johnson
P
, et al
.
Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study
.
J Clin Oncol.
2019
;
37
(
6
):
481
-
489
.
16.
Smith
SD
,
Till
BG
,
Shadman
MS
, et al
.
Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy
.
Br J Haematol.
2020
;
189
(
6
):
1119
-
1126
.
17.
Zhang
J
,
Grubor
V
,
Love
CL
, et al
.
Genetic heterogeneity of diffuse large B-cell lymphoma
.
Proc Natl Acad Sci USA.
2013
;
110
(
4
):
1398
-
1403
.
18.
Ley
TJ
,
Miller
C
,
Ding
L
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med.
2013
;
368
(
22
):
2059
-
2074
.
19.
Lohr
JG
,
Stojanov
P
,
Lawrence
MS
, et al
.
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing
.
Proc Natl Acad Sci USA.
2012
;
109
(
10
):
3879
-
3884
.
20.
Mantovani
F
,
Collavin
L
,
Del Sal
G
.
Mutant p53 as a guardian of the cancer cell
.
Cell Death Differ.
2019
;
26
(
2
):
199
-
212
.
21.
Cooks
T
,
Pateras
IS
,
Tarcic
O
, et al
.
Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer
[published correction appears in Cancer Cell. 2013;24(2):272].
Cancer Cell.
2013
;
23
(
5
):
634
-
646
.
22.
Cooks
T
,
Pateras
IS
,
Jenkins
LM
, et al
.
Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246
.
Nat Commun.
2018
;
9
(
1
):
771
.
23.
Knittel
G
,
Rehkämper
T
,
Korovkina
D
, et al
.
Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia
.
Nat Commun.
2017
;
8
(
1
):
153
.
24.
Leskov
I
,
Pallasch
CP
,
Drake
A
, et al
.
Rapid generation of human B-cell lymphomas via combined expression of Myc and Bcl2 and their use as a preclinical model for biological therapies
.
Oncogene.
2013
;
32
(
8
):
1066
-
1072
.
25.
Kohlhaas
V
,
Blakemore
SJ
,
Al-Maarri
M
, et al
.
Active Akt signaling triggers CLL toward Richter transformation via overactivation of Notch1
.
Blood.
2021
;
137
(
5
):
646
-
660
.
26.
Bichi
R
,
Shinton
SA
,
Martin
ES
, et al
.
Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression
.
Proc Natl Acad Sci USA.
2002
;
99
(
10
):
6955
-
6960
.
27.
Knittel
G
,
Liedgens
P
,
Korovkina
D
, et al;
German International Cancer Genome Consortium Molecular Mechanisms in Malignant Lymphoma by Sequencing Project Consortium
.
B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice
.
Blood.
2016
;
127
(
22
):
2732
-
2741
.
28.
Overdijk
MB
,
Verploegen
S
,
Marijn
B
, et al
.
Phagocytosis is a mechanism of action for daratumumab
[abstract].
Blood.
2012
;
120
(
21
). Abstract
4054
.
29.
Busch
L
,
Mougiakakos
D
,
Büttner-Herold
M
, et al
.
Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway
.
Leukemia.
2018
;
32
(
11
):
2445
-
2458
.
30.
Théry
C
,
Witwer
KW
,
Aikawa
E
, et al
.
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
.
J Extracell Vesicles.
2018
;
7
(
1
):
1535750
.
31.
Pegtel
DM
,
Gould
SJ
.
Exosomes
.
Annu Rev Biochem.
2019
;
88
:
487
-
514
.
32.
Aung
T
,
Chapuy
B
,
Vogel
D
, et al
.
Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3
.
Proc Natl Acad Sci USA.
2011
;
108
(
37
):
15336
-
15341
.
33.
Catalano
M
,
O’Driscoll
L
.
Inhibiting extracellular vesicles formation and release: a review of EV inhibitors
.
J Extracell Vesicles.
2019
;
9
(
1
):
1703244
.
34.
Ou
HL
,
Kim
CS
,
Uszkoreit
S
,
Wickström
SA
,
Schumacher
B
.
Somatic niche cells regulate the CEP-1/p53-mediated DNA damage response in primordial germ cells
.
Dev Cell.
2019
;
50
(
2
):
167
-
183.e8
.
35.
Levine
AJ
.
p53: 800 million years of evolution and 40 years of discovery
.
Nat Rev Cancer.
2020
;
20
(
8
):
471
-
480
.
36.
Raj
N
,
Attardi
LD
.
Tumor suppression: p53 alters immune surveillance to restrain liver cancer
.
Curr Biol.
2013
;
23
(
12
):
R527
-
R530
.
37.
Xue
W
,
Zender
L
,
Miething
C
, et al
.
Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas
[published correction appears in Nature. 2011;473(7348):544].
Nature.
2007
;
445
(
7128
):
656
-
660
.
38.
Eichhorst
B
,
Fink
AM
,
Bahlo
J
, et al;
German CLL Study Group (GCLLSG)
.
First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial
.
Lancet Oncol.
2016
;
17
(
7
):
928
-
942
.
39.
Campo
E
,
Cymbalista
F
,
Ghia
P
, et al
.
TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics
.
Haematologica.
2018
;
103
(
12
):
1956
-
1968
.
40.
Cortez
MA
,
Ivan
C
,
Valdecanas
D
, et al
.
PD-L1 regulation by p53 via miR-34
.
J Natl Cancer Inst.
2015
;
108
(
1
):
djv303
.
41.
Cha
JH
,
Chan
LC
,
Li
CW
,
Hsu
JL
,
Hung
MC
.
Mechanisms controlling PD-L1 expression in cancer
.
Mol Cell.
2019
;
76
(
3
):
359
-
370
.
42.
Dong
ZY
,
Zhong
WZ
,
Zhang
XC
, et al
.
Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma
.
Clin Cancer Res.
2017
;
23
(
12
):
3012
-
3024
.
43.
Assoun
S
,
Theou-Anton
N
,
Nguenang
M
, et al
.
Association of TP53 mutations with response and longer survival under immune checkpoint inhibitors in advanced non-small-cell lung cancer
.
Lung Cancer.
2019
;
132
:
65
-
71
.
44.
Sanmamed
MF
,
Chen
L
.
A Paradigm shift in cancer immunotherapy: from enhancement to normalization
[published correction appears in Cell. 2019;176(3):677].
Cell.
2018
;
175
(
2
):
313
-
326
.
45.
Topalian
SL
,
Drake
CG
,
Pardoll
DM
.
Immune checkpoint blockade: a common denominator approach to cancer therapy
.
Cancer Cell.
2015
;
27
(
4
):
450
-
461
.
46.
Gordon
SR
,
Maute
RL
,
Dulken
BW
, et al
.
PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity
.
Nature.
2017
;
545
(
7655
):
495
-
499
.
47.
Keane
C
,
Vari
F
,
Hertzberg
M
, et al
.
Ratios of T-cell immune effectors and checkpoint molecules as prognostic biomarkers in diffuse large B-cell lymphoma: a population-based study
.
Lancet Haematol.
2015
;
2
(
10
):
e445
-
e455
.
48.
Xu-Monette
ZY
,
Xiao
M
,
Au
Q
, et al
.
Immune profiling and quantitative analysis decipher the clinical role of immune-checkpoint expression in the tumor immune microenvironment of DLBCL
.
Cancer Immunol Res.
2019
;
7
(
4
):
644
-
657
.
49.
Pascual
M
,
Mena-Varas
M
,
Robles
EF
, et al
.
PD-1/PD-L1 immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas
.
Blood.
2019
;
133
(
22
):
2401
-
2412
.
50.
Yu
X
,
Harris
SL
,
Levine
AJ
.
The regulation of exosome secretion: a novel function of the p53 protein
.
Cancer Res.
2006
;
66
(
9
):
4795
-
4801
.
51.
Shinohara
H
,
Kuranaga
Y
,
Kumazaki
M
, et al
.
Regulated polarization of tumor-associated macrophages by miR-145 via colorectal cancer-derived extracellular vesicles
.
J Immunol.
2017
;
199
(
4
):
1505
-
1515
.
52.
Sachdeva
M
,
Zhu
S
,
Wu
F
, et al
.
p53 represses c-Myc through induction of the tumor suppressor miR-145
.
Proc Natl Acad Sci USA.
2009
;
106
(
9
):
3207
-
3212
.
53.
Goulielmaki
E
,
Ioannidou
A
,
Tsekrekou
M
, et al
.
Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage
.
Nat Commun.
2020
;
11
(
1
):
42
.
54.
Andrade
LNS
,
Otake
AH
,
Cardim
SGB
, et al
.
Extracellular vesicles shedding promotes melanoma growth in response to chemotherapy
.
Sci Rep.
2019
;
9
(
1
):
14482
.
55.
Chen
G
,
Huang
AC
,
Zhang
W
, et al
.
Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response
.
Nature.
2018
;
560
(
7718
):
382
-
386
.
56.
Dumontet
E
,
Pangault
C
,
Roulois
D
, et al
.
Extracellular vesicles shed by follicular lymphoma B cells promote polarization of the bone marrow stromal cell niche
.
Blood.
2021
;
138
(
1
):
57
-
70
.
57.
Herling
CD
,
Abedpour
N
,
Weiss
J
, et al
.
Clonal dynamics towards the development of venetoclax resistance in chronic lymphocytic leukemia
.
Nat Commun.
2018
;
9
(
1
):
727
.
You do not currently have access to this content.

Sign in via your Institution