Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix adhesion. Although all integrins can undergo activation (affinity change for ligands), the degree of activation is most spectacular for integrins on blood cells. The β2 integrins are exclusively expressed on the surface of all leukocytes including neutrophils, lymphocytes, and monocytes. They are essential for many leukocyte functions and are strictly required for neutrophil arrest from rolling. The inside-out integrin activation process receives input from chemokine receptors and adhesion molecules. The integrin activation pathway involves many cytoplasmic signaling molecules such as spleen tyrosine kinase, other kinases like Bruton's tyrosine kinase, phosphoinositide 3-kinases, phospholipases, Rap1 GTPases, and the Rap1-GTP-interacting adapter molecule. These signaling events ultimately converge on talin-1 and kindlin-3, which bind to the integrin β cytoplasmic domain and induce integrin conformational changes: extension and high affinity for ligand. Here, we review recent structural and functional insights into how talin-1 and kindlin-3 enable integrin activation, with a focus on the distal signaling components that trigger β2 integrin conformational changes and leukocyte adhesion under flow.

1.
McEver
RP
.
Selectins: initiators of leucocyte adhesion and signalling at the vascular wall
.
Cardiovasc Res.
2015
;
107
(
3
):
331
-
339
.
2.
Alon
R
,
Feigelson
SW
.
Chemokine-triggered leukocyte arrest: force-regulated bi-directional integrin activation in quantal adhesive contacts
.
Curr Opin Cell Biol.
2012
;
24
(
5
):
670
-
676
.
3.
Ley
K
,
Laudanna
C
,
Cybulsky
MI
,
Nourshargh
S
.
Getting to the site of inflammation: the leukocyte adhesion cascade updated
.
Nat Rev Immunol.
2007
;
7
(
9
):
678
-
689
.
4.
Kolaczkowska
E
,
Kubes
P
.
Neutrophil recruitment and function in health and inflammation
.
Nat Rev Immunol.
2013
;
13
(
3
):
159
-
175
.
5.
Vestweber
D
.
How leukocytes cross the vascular endothelium
.
Nat Rev Immunol.
2015
;
15
(
11
):
692
-
704
.
6.
Shimaoka
M
,
Xiao
T
,
Liu
JH
, et al
.
Structures of the alpha L I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation
.
Cell.
2003
;
112
(
1
):
99
-
111
.
7.
Hynes
RO
.
Integrins: bidirectional, allosteric signaling machines
.
Cell.
2002
;
110
(
6
):
673
-
687
.
8.
Sun
H
,
Zhi
K
,
Hu
L
,
Fan
Z
.
The activation and regulation of β2 integrins in phagocytes and phagocytosis
.
Front Immunol.
2021
;
12
:
633639
.
9.
Kuwano
Y
,
Spelten
O
,
Zhang
H
,
Ley
K
,
Zarbock
A
.
Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils
.
Blood.
2010
;
116
(
4
):
617
-
624
.
10.
Zarbock
A
,
Lowell
CA
,
Ley
K
.
Spleen tyrosine kinase Syk is necessary for E-selectin-induced alpha(L)beta(2) integrin-mediated rolling on intercellular adhesion molecule-1
.
Immunity.
2007
;
26
(
6
):
773
-
783
.
11.
Graham
GJ
,
Handel
TM
,
Proudfoot
AEI
.
Leukocyte adhesion: reconceptualizing chemokine presentation by glycosaminoglycans
.
Trends Immunol.
2019
;
40
(
6
):
472
-
481
.
12.
Luo
BH
,
Carman
CV
,
Springer
TA
.
Structural basis of integrin regulation and signaling
.
Annu Rev Immunol.
2007
;
25
(
1
):
619
-
647
.
13.
Fan
Z
,
Ley
K
.
Leukocyte arrest: biomechanics and molecular mechanisms of β2 integrin activation
.
Biorheology.
2015
;
52
(
5-6
):
353
-
377
.
14.
Lu
C
,
Shimaoka
M
,
Zang
Q
,
Takagi
J
,
Springer
TA
.
Locking in alternate conformations of the integrin alphaLbeta2 I domain with disulfide bonds reveals functional relationships among integrin domains
.
Proc Natl Acad Sci USA.
2001
;
98
(
5
):
2393
-
2398
.
15.
Lu
C
,
Ferzly
M
,
Takagi
J
,
Springer
TA
.
Epitope mapping of antibodies to the C-terminal region of the integrin beta 2 subunit reveals regions that become exposed upon receptor activation
.
J Immunol.
2001
;
166
(
9
):
5629
-
5637
.
16.
Fan
Z
,
McArdle
S
,
Marki
A
, et al
.
Neutrophil recruitment limited by high-affinity bent β2 integrin binding ligand in cis
.
Nat Commun.
2016
;
7
(
1
):
12658
.
17.
Fan
Z
,
Kiosses
WB
,
Sun
H
, et al
.
High-affinity bent β2-integrin molecules in arresting neutrophils face each other through binding to ICAMs in cis
.
Cell Rep.
2019
;
26
(
1
):
119
-
130
.
18.
Saggu
G
,
Okubo
K
,
Chen
Y
, et al
.
Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment
.
Nat Commun.
2018
;
9
(
1
):
5058
.
19.
Harris
ES
,
Weyrich
AS
,
Zimmerman
GA
.
Lessons from rare maladies: leukocyte adhesion deficiency syndromes
.
Curr Opin Hematol.
2013
;
20
(
1
):
16
-
25
.
20.
Fan
Z
,
Ley
K
.
Leukocyte adhesion deficiency IV. Monocyte integrin activation deficiency in cystic fibrosis
.
Am J Respir Crit Care Med.
2016
;
193
(
10
):
1075
-
1077
.
21.
Anderson
DC
,
Springer
TA
.
Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins
.
Annu Rev Med.
1987
;
38
(
1
):
175
-
194
.
22.
Malinin
NL
,
Zhang
L
,
Choi
J
, et al
.
A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans
.
Nat Med.
2009
;
15
(
3
):
313
-
318
.
23.
Svensson
L
,
Howarth
K
,
McDowall
A
, et al
.
Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation
.
Nat Med.
2009
;
15
(
3
):
306
-
312
.
24.
Kuijpers
TW
,
van de Vijver
E
,
Weterman
MA
, et al
.
LAD-1/variant syndrome is caused by mutations in FERMT3
.
Blood.
2009
;
113
(
19
):
4740
-
4746
.
25.
Moser
M
,
Legate
KR
,
Zent
R
,
Fässler
R
.
The tail of integrins, talin, and kindlins
.
Science.
2009
;
324
(
5929
):
895
-
899
.
26.
Calderwood
DA
,
Campbell
ID
,
Critchley
DR
.
Talins and kindlins: partners in integrin-mediated adhesion
.
Nat Rev Mol Cell Biol.
2013
;
14
(
8
):
503
-
517
.
27.
Shattil
SJ
,
Kim
C
,
Ginsberg
MH
.
The final steps of integrin activation: the end game
.
Nat Rev Mol Cell Biol.
2010
;
11
(
4
):
288
-
300
.
28.
Zhu
L
,
Plow
EF
,
Qin
J
.
Initiation of focal adhesion assembly by talin and kindlin: a dynamic view
.
Protein Sci.
2021
;
30
(
3
):
531
-
542
.
29.
Klapholz
B
,
Brown
NH
.
Talin – the master of integrin adhesions
.
J Cell Sci.
2017
;
130
(
15
):
2435
-
2446
.
30.
O’Halloran
T
,
Beckerle
MC
,
Burridge
K
.
Identification of talin as a major cytoplasmic protein implicated in platelet activation
.
Nature.
1985
;
317
(
6036
):
449
-
451
.
31.
Goksoy
E
,
Ma
YQ
,
Wang
X
, et al
.
Structural basis for the autoinhibition of talin in regulating integrin activation
.
Mol Cell.
2008
;
31
(
1
):
124
-
133
.
32.
Goult
BT
,
Xu
XP
,
Gingras
AR
, et al
.
Structural studies on full-length talin1 reveal a compact auto-inhibited dimer: implications for talin activation
.
J Struct Biol.
2013
;
184
(
1
):
21
-
32
.
33.
Dedden
D
,
Schumacher
S
,
Kelley
CF
, et al
.
The architecture of talin1 reveals an autoinhibition mechanism
.
Cell.
2019
;
179
(
1
):
120
-
131.e13
.
34.
Song
X
,
Yang
J
,
Hirbawi
J
, et al
.
A novel membrane-dependent on/off switch mechanism of talin FERM domain at sites of cell adhesion
.
Cell Res.
2012
;
22
(
11
):
1533
-
1545
.
35.
Frame
MC
,
Patel
H
,
Serrels
B
,
Lietha
D
,
Eck
MJ
.
The FERM domain: organizing the structure and function of FAK
.
Nat Rev Mol Cell Biol.
2010
;
11
(
11
):
802
-
814
.
36.
Chinthalapudi
K
,
Rangarajan
ES
,
Izard
T
.
The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation
.
Proc Natl Acad Sci USA.
2018
;
115
(
41
):
10339
-
10344
.
37.
Elliott
PR
,
Goult
BT
,
Kopp
PM
, et al
.
The structure of the talin head reveals a novel extended conformation of the FERM domain
.
Structure.
2010
;
18
(
10
):
1289
-
1299
.
38.
Zhang
P
,
Azizi
L
,
Kukkurainen
S
, et al
.
Crystal structure of the FERM-folded talin head reveals the determinants for integrin binding
.
Proc Natl Acad Sci USA.
2020
;
117
(
51
):
32402
-
32412
.
39.
Goult
BT
,
Bouaouina
M
,
Harburger
DS
, et al
.
The structure of the N-terminus of kindlin-1: a domain important for alphaiibbeta3 integrin activation
.
J Mol Biol.
2009
;
394
(
5
):
944
-
956
.
40.
Ni
T
,
Kalli
AC
,
Naughton
FB
, et al
.
Structure and lipid-binding properties of the kindlin-3 pleckstrin homology domain
.
Biochem J.
2017
;
474
(
4
):
539
-
556
.
41.
Hart
R
,
Stanley
P
,
Chakravarty
P
,
Hogg
N
.
The kindlin 3 pleckstrin homology domain has an essential role in lymphocyte function-associated antigen 1 (LFA-1) integrin-mediated B cell adhesion and migration
.
J Biol Chem.
2013
;
288
(
21
):
14852
-
14862
.
42.
Wen
L
,
Marki
A
,
Roy
P
, et al
.
Kindlin-3 recruitment to the plasma membrane precedes high-affinity β2-integrin and neutrophil arrest from rolling
.
Blood.
2021
;
137
(
1
):
29
-
38
.
43.
Chua
GL
,
Tan
SM
,
Bhattacharjya
S
.
NMR characterization and membrane interactions of the loop region of kindlin-3 F1 subdomain
.
PLoS One.
2016
;
11
(
4
):
e0153501
.
44.
Perera
HD
,
Ma
YQ
,
Yang
J
,
Hirbawi
J
,
Plow
EF
,
Qin
J
.
Membrane binding of the N-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation
.
Structure.
2011
;
19
(
11
):
1664
-
1671
.
45.
Gao
J
,
Huang
M
,
Lai
J
, et al
.
Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin
.
J Cell Sci.
2017
;
130
(
21
):
3764
-
3775
.
46.
Klapproth
S
,
Bromberger
T
,
Türk
C
,
Krüger
M
,
Moser
M
.
A kindlin-3-leupaxin-paxillin signaling pathway regulates podosome stability
.
J Cell Biol.
2019
;
218
(
10
):
3436
-
3454
.
47.
Bialkowska
K
,
Sossey-Alaoui
K
,
Pluskota
E
,
Izem
L
,
Qin
J
,
Plow
EF
.
Site-specific phosphorylation regulates the functions of kindlin-3 in a variety of cells
.
Life Sci Alliance.
2020
;
3
(
3
):
e201900594
.
48.
Margraf
A
,
Germena
G
,
Drexler
HCA
, et al
.
The integrin-linked kinase is required for chemokine-triggered high-affinity conformation of the neutrophil β2-integrin LFA-1
.
Blood.
2020
;
136
(
19
):
2200
-
2205
.
49.
Huet-Calderwood
C
,
Brahme
NN
,
Kumar
N
, et al
.
Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation
.
J Cell Sci.
2014
;
127
(
Pt 19
):
4308
-
4321
.
50.
Yates
LA
,
Füzéry
AK
,
Bonet
R
,
Campbell
ID
,
Gilbert
RJ
.
Biophysical analysis of Kindlin-3 reveals an elongated conformation and maps integrin binding to the membrane-distal β-subunit NPXY motif
.
J Biol Chem.
2012
;
287
(
45
):
37715
-
37731
.
51.
Bu
W
,
Levitskaya
Z
,
Loh
ZY
, et al
.
Structural basis of human full-length kindlin-3 homotrimer in an auto-inhibited state
.
PLoS Biol.
2020
;
18
(
7
):
e3000755
.
52.
Li
H
,
Deng
Y
,
Sun
K
, et al
.
Structural basis of kindlin-mediated integrin recognition and activation
.
Proc Natl Acad Sci USA.
2017
;
114
(
35
):
9349
-
9354
.
53.
Sun
J
,
Xiao
D
,
Ni
Y
, et al
.
Structure basis of the FERM domain of kindlin-3 in supporting integrin αIIbβ3 activation in platelets
.
Blood Adv.
2020
;
4
(
13
):
3128
-
3135
.
54.
Ye
F
,
Petrich
BG
,
Anekal
P
, et al
.
The mechanism of kindlin-mediated activation of integrin αIIbβ3
.
Curr Biol.
2013
;
23
(
22
):
2288
-
2295
.
55.
Kadry
YA
,
Maisuria
EM
,
Huet-Calderwood
C
,
Calderwood
DA
.
Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding
.
J Biol Chem.
2020
;
295
(
32
):
11161
-
11173
.
56.
Stefanini
L
,
Lee
RH
,
Paul
DS
, et al
.
Functional redundancy between RAP1 isoforms in murine platelet production and function
.
Blood.
2018
;
132
(
18
):
1951
-
1962
.
57.
Bivona
TG
,
Wiener
HH
,
Ahearn
IM
,
Silletti
J
,
Chiu
VK
,
Philips
MR
.
Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion
.
J Cell Biol.
2004
;
164
(
3
):
461
-
470
.
58.
Su
W
,
Wynne
J
,
Pinheiro
EM
, et al
.
Rap1 and its effector RIAM are required for lymphocyte trafficking
.
Blood.
2015
;
126
(
25
):
2695
-
2703
.
59.
Moser
M
,
Bauer
M
,
Schmid
S
, et al
.
Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells
.
Nat Med.
2009
;
15
(
3
):
300
-
305
.
60.
Han
J
,
Lim
CJ
,
Watanabe
N
, et al
.
Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3
.
Curr Biol.
2006
;
16
(
18
):
1796
-
1806
.
61.
Watanabe
N
,
Bodin
L
,
Pandey
M
, et al
.
Mechanisms and consequences of agonist-induced talin recruitment to platelet integrin alphaIIbbeta3
.
J Cell Biol.
2008
;
181
(
7
):
1211
-
1222
.
62.
Stritt
S
,
Wolf
K
,
Lorenz
V
, et al
.
Rap1-GTP-interacting adaptor molecule (RIAM) is dispensable for platelet integrin activation and function in mice
.
Blood.
2015
;
125
(
2
):
219
-
222
.
63.
Lagarrigue
F
,
Kim
C
,
Ginsberg
MH
.
The Rap1-RIAM-talin axis of integrin activation and blood cell function
.
Blood.
2016
;
128
(
4
):
479
-
487
.
64.
Yang
J
,
Zhu
L
,
Zhang
H
, et al
.
Conformational activation of talin by RIAM triggers integrin-mediated cell adhesion
.
Nat Commun.
2014
;
5
(
1
):
5880
.
65.
Cho
EA
,
Zhang
P
,
Kumar
V
, et al
.
Phosphorylation of RIAM by src promotes integrin activation by unmasking the PH domain of RIAM
.
Structure.
2021
;
29
(
4
):
320
-
329.e4
.
66.
Klapproth
S
,
Sperandio
M
,
Pinheiro
EM
, et al
.
Loss of the Rap1 effector RIAM results in leukocyte adhesion deficiency due to impaired β2 integrin function in mice
.
Blood.
2015
;
126
(
25
):
2704
-
2712
.
67.
Coló
GP
,
Lafuente
EM
,
Teixidó
J
.
The MRL proteins: adapting cell adhesion, migration and growth
.
Eur J Cell Biol.
2012
;
91
(
11-12
):
861
-
868
.
68.
Sun
H
,
Lagarrigue
F
,
Wang
H
, et al
.
Distinct integrin activation pathways for effector and regulatory T cell trafficking and function
.
J Exp Med.
2021
;
218
(
2
):
e20201524
.
69.
Gingras
AR
,
Lagarrigue
F
,
Cuevas
MN
, et al
.
Rap1 binding and a lipid-dependent helix in talin F1 domain promote integrin activation in tandem
.
J Cell Biol.
2019
;
218
(
6
):
1799
-
1809
.
70.
Zhu
L
,
Yang
J
,
Bromberger
T
, et al
.
Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation
.
Nat Commun.
2017
;
8
(
1
):
1744
.
71.
Plak
K
,
Pots
H
,
Van Haastert
PJ
,
Kortholt
A
.
Direct interaction between talinb and rap1 is necessary for adhesion of dictyostelium cells
.
BMC Cell Biol.
2016
;
17
(
1
):
1
.
72.
Camp
D
,
Haage
A
,
Solianova
V
, et al
.
Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila.
J Cell Sci.
2018
;
131
(
24
):
jcs225144
.
73.
Bromberger
T
,
Klapproth
S
,
Rohwedder
I
, et al
.
Direct Rap1/Talin1 interaction regulates platelet and neutrophil integrin activity in mice
.
Blood.
2018
;
132
(
26
):
2754
-
2762
.
74.
Lagarrigue
F
,
Paul
DS
,
Gingras
AR
, et al
.
Talin-1 is the principal platelet Rap1 effector of integrin activation
.
Blood.
2020
;
136
(
10
):
1180
-
1190
.
75.
Goult
BT
,
Bouaouina
M
,
Elliott
PR
, et al
.
Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation
.
EMBO J.
2010
;
29
(
6
):
1069
-
1080
.
76.
Bromberger
T
,
Klapproth
S
,
Rohwedder
I
, et al
.
Binding of Rap1 and Riam to talin1 fine-tune β2 integrin activity during leukocyte trafficking
.
Front Immunol.
2021
;
12
:
702345
.
77.
Bromberger
T
,
Zhu
L
,
Klapproth
S
,
Qin
J
,
Moser
M
.
Rap1 and membrane lipids cooperatively recruit talin to trigger integrin activation
.
J Cell Sci.
2019
;
132
(
21
):
jcs235531
.
78.
Liao
Z
,
Gingras
AR
,
Lagarrigue
F
,
Ginsberg
MH
,
Shattil
SJ
.
Optogenetics-based localization of talin to the plasma membrane promotes activation of β3 integrins
.
J Biol Chem.
2021
;
296
:
100675
.
79.
Lau
TL
,
Kim
C
,
Ginsberg
MH
,
Ulmer
TS
.
The structure of the integrin alphaIIbbeta3 transmembrane complex explains integrin transmembrane signalling
.
EMBO J.
2009
;
28
(
9
):
1351
-
1361
.
80.
Kim
C
,
Schmidt
T
,
Cho
EG
,
Ye
F
,
Ulmer
TS
,
Ginsberg
MH
.
Basic amino-acid side chains regulate transmembrane integrin signalling [correction published in Nature. 2013;497:652]
.
Nature.
2011
;
481
(
7380
):
209
-
213
.
81.
Guo
J
,
Zhang
Y
,
Li
H
, et al
.
Intramembrane ionic protein-lipid interaction regulates integrin structure and function
.
PLoS Biol.
2018
;
16
(
11
):
e2006525
.
82.
Kondo
N
,
Ueda
Y
,
Kinashi
T
.
Kindlin-3 disrupts an intersubunit association in the integrin LFA1 to trigger positive feedback activation by Rap1 and talin1
.
Sci Signal.
2021
;
14
(
686
):
eabf2184
.
83.
Kim
M
,
Carman
CV
,
Springer
TA
.
Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins
.
Science.
2003
;
301
(
5640
):
1720
-
1725
.
84.
Sun
H
,
Fan
Z
,
Gingras
AR
,
Lopez-Ramirez
MA
,
Ginsberg
MH
,
Ley
K
.
Frontline science: a flexible kink in the transmembrane domain impairs β2 integrin extension and cell arrest from rolling
.
J Leukoc Biol.
2020
;
107
(
2
):
175
-
183
.
85.
Kim
C
,
Ye
F
,
Hu
X
,
Ginsberg
MH
.
Talin activates integrins by altering the topology of the β transmembrane domain
.
J Cell Biol.
2012
;
197
(
5
):
605
-
611
.
86.
Stefanini
L
,
Ye
F
,
Snider
AK
, et al
.
A talin mutant that impairs talin-integrin binding in platelets decelerates αIIbβ3 activation without pathological bleeding
.
Blood.
2014
;
123
(
17
):
2722
-
2731
.
87.
Yago
T
,
Petrich
BG
,
Zhang
N
, et al
.
Blocking neutrophil integrin activation prevents ischemia-reperfusion injury
.
J Exp Med.
2015
;
212
(
8
):
1267
-
1281
.
88.
Lefort
CT
,
Rossaint
J
,
Moser
M
, et al
.
Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation
.
Blood.
2012
;
119
(
18
):
4275
-
4282
.
89.
Nordenfelt
P
,
Moore
TI
,
Mehta
SB
, et al
.
Direction of actin flow dictates integrin LFA-1 orientation during leukocyte migration
.
Nat Commun.
2017
;
8
(
1
):
2047
.
90.
Moore
TI
,
Aaron
J
,
Chew
TL
,
Springer
TA
.
Measuring integrin conformational change on the cell surface with super-resolution microscopy
.
Cell Rep.
2018
;
22
(
7
):
1903
-
1912
.
91.
Gingras
AR
,
Bate
N
,
Goult
BT
, et al
.
The structure of the C-terminal actin-binding domain of talin
.
EMBO J.
2008
;
27
(
2
):
458
-
469
.
92.
Atherton
P
,
Stutchbury
B
,
Wang
DY
, et al
.
Vinculin controls talin engagement with the actomyosin machinery
.
Nat Commun.
2015
;
6
(
1
):
10038
.
93.
Lee
HS
,
Bellin
RM
,
Walker
DL
, et al
.
Characterization of an actin-binding site within the talin FERM domain
.
J Mol Biol.
2004
;
343
(
3
):
771
-
784
.
94.
Ciobanasu
C
,
Wang
H
,
Henriot
V
, et al
.
Integrin-bound talin head inhibits actin filament barbed-end elongation
.
J Biol Chem.
2018
;
293
(
7
):
2586
-
2596
.
95.
Kahner
BN
,
Kato
H
,
Banno
A
,
Ginsberg
MH
,
Shattil
SJ
,
Ye
F
.
Kindlins, integrin activation and the regulation of talin recruitment to αIIbβ3
.
PLoS One.
2012
;
7
(
3
):
e34056
.
96.
Yago
T
,
Zhang
N
,
Zhao
L
,
Abrams
CS
,
McEver
RP
.
Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils
.
Blood Adv.
2018
;
2
(
7
):
731
-
744
.
97.
Crittenden
JR
,
Bergmeier
W
,
Zhang
Y
, et al
.
CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation [correction published in Nat Med. 2004;10:1139]
.
Nat Med.
2004
;
10
(
9
):
982
-
986
.
98.
Bergmeier
W
,
Goerge
T
,
Wang
HW
, et al
.
Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III
.
J Clin Invest.
2007
;
117
(
6
):
1699
-
1707
.
99.
Maiguel
D
,
Faridi
MH
,
Wei
C
, et al
.
Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease
.
Sci Signal.
2011
;
4
(
189
):
ra57
.
100.
Ley
K
,
Rivera-Nieves
J
,
Sandborn
WJ
,
Shattil
S
.
Integrin-based therapeutics: biological basis, clinical use and new drugs
.
Nat Rev Drug Discov.
2016
;
15
(
3
):
173
-
183
.
You do not currently have access to this content.

Sign in via your Institution