Myeloproliferative neoplasms (MPNs) are a heterogeneous group of chronic hematological diseases that arise from the clonal expansion of abnormal hematopoietic stem cells, of which polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) have been extensively reviewed in the context of control of clonal expansion, fibrosis, and other phenotypes. Herein, we review current knowledge on the influence of different forms of MPN on bone health. In studies, murine models and human data have implicated various degrees of effect of different forms of MPN on bone density and on osteoblast proliferation and differentiation. Most results have shown that bone volume is generally increased in patients with PMF, whereas it is slightly decreased or not altered in patients with ET or PV, although possible differences between male and female phenotypes were not fully explored in most MPN forms. Osteosclerosis in patients with PMF is a serious complication that can lead to bone marrow failure, and the loss of bone reported in some patients with ET or PV can lead to osteoporotic fractures. Some MPN forms are associated with an increased number of megakaryocytes (MKs), and several of the MK-associated factors in MPN are known to affect bone development. We review known mechanisms involved in these processes, with a focus on the role of MKs and secreted factors. Understanding MPN-associated changes in bone health could improve early intervention and treatment of this side effect of the pathology.

1.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood.
2016
;
127
(
20
):
2391
-
2405
.
2.
Titmarsh
GJ
,
Duncombe
AS
,
McMullin
MF
, et al
.
How common are myeloproliferative neoplasms? A systematic review and meta-analysis
.
Am J Hematol.
2014
;
89
(
6
):
581
-
587
.
3.
Szuber
N
,
Mudireddy
M
,
Nicolosi
M
, et al
.
3023 Mayo Clinic patients with myeloproliferative neoplasms:risk-stratified comparison of survival and outcomes data among disease subgroups
.
Mayo Clinic Proceed.
2019
;
94
(
4
):
599
-
610
.
4.
Tefferi
A
,
Barbui
T
.
Polycythemia vera and essential thrombocythemia:2021 update on diagnosis, risk-stratification and management
.
Am J Hematol.
2020
;
95
(
12
):
1599
-
1613
.
5.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
,
S
et al
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet.
2005
;
365
(
9464
):
1054
-
1061
.
6.
Tefferi
A
.
Primary myelofibrosis:2021 update on diagnosis, risk-stratification and management
.
Am J Hematol.
2021
;
96
(
1
):
145
-
162
.
7.
Scott
LM
,
Tong
W
,
Levine
RL
, et al
.
JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis
.
N Engl J Med.
2007
;
356
(
5
):
459
-
468
.
8.
Pikman
Y
,
Lee
BH
,
Mercher
T
, et al
.
MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia
.
PLoS Med.
2006
;
3
(
7
):
e270
.
9.
Rumi
E
,
Pietra
D
,
Guglielmelli
P
, et al
.
Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms
.
Blood.
2013
;
121
(
21
):
4388
-
4395
.
10.
Klampfl
T
,
Gisslinger
H
,
Harutyunyan
AS
, et al
.
Somatic mutations of calreticulin in myeloproliferative neoplasms
.
N Engl J Med.
2013
;
369
(
25
):
2379
-
2390
.
11.
Marneth
AE
,
Mullally
A
.
The molecular genetics of myeloproliferative neoplasms
.
Cold Spring Harb Prospect Med.
2020
;
10
(
2
):
a034876
.
12.
Delic
S
,
Rose
D
,
Kern
W
, et al
.
Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera
.
Br J Haematol.
2016
;
175
(
3
):
419
-
426
.
13.
Grinfeld
J
,
Nangalia
J
,
Baxter
EJ
, et al
.
Classification and personalized prognosis in myeloproliferative neoplasms
.
N Engl J Med.
2018
;
379
(
15
):
1416
-
1430
.
14.
Williams
N
,
Lee
J
,
Moore
L
, et al
.
Phylogenetic reconstruction of myeloproliferative neoplasm reveals very early origins and lifelong evolution
.
BioRxiv
2020
:doi:10.1101/2020.11.09.374710.
15.
Van Egeren
D
,
Escabi
J
,
Nguyen
M
, et al
.
Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms
.
Cell Stem Cell.
2021
;
28
(
3
):
514
-
523.e519
.
16.
Carroll
SH
,
Ravid
K
.
Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors [online publication]
.
Expert Rev Mol Med.
2013
;
15
:14 February 2013.
17.
Hall
BK
,
Miyake
T
.
All for one and one for all: condensations and the initiation of skeletal development
.
BioEssays.
2000
;
22
(
2
):
138
-
147
.
18.
Zhou
G
,
Zheng
Q
,
Engin
F
, et al
.
Dominance of SOX9 function over RUNX2 during skeletogenesis
.
Proc Natl Acad Sci USA.
2006
;
103
(
50
):
19004
-
19009
.
19.
Komori
T
,
Yagi
H
,
Nomura
S
, et al
.
Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts
.
Cell.
1997
;
89
(
5
):
755
-
764
.
20.
Nakashima
K
,
Zhou
X
,
Kunkel
G
, et al
.
The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation
.
Cell.
2002
;
108
(
1
):
17
-
29
.
21.
Blank
M
,
Sims
NA
.
Cellular processes by which osteoblasts and osteocytes control bone mineral deposition and maturation revealed by stage-specific EphrinB2 knockdown
.
Curr Osteoporos Rep.
2019
;
17
(
5
):
270
-
280
.
22.
Kobayashi
Y
,
Uehara
S
,
Udagawa
N
,
Takahashi
N
.
Regulation of bone metabolism by Wnt signals
.
J Biochem.
2016
;
159
(
4
):
387
-
392
.
23.
Beederman
M
,
Lamplot
JD
,
Nan
G
, et al
.
BMP signaling in mesenchymal stem cell differentiation and bone formation
.
J Biomed Sci Eng.
2013
;
6
(
08 8A
):
32
-
52
.
24.
Takei
Y
,
Minamizaki
T
,
Yoshiko
Y
.
Functional diversity of fibroblast growth factors in bone formation
.
Int J Endocrinol.
2015
;
2015
:
729352
.
25.
Zupan
J
,
Jeras
M
,
Marc
J
.
Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts
.
Biochemia Med.
2013
;
23
(
1
):
43
-
63
.
26.
Khosla
S
,
Oursler
MJ
,
Monroe
DG
.
Estrogen and the skeleton
.
Trends Endocrinol Metab.
2012
;
23
(
11
):
576
-
581
.
27.
Peacock
M
.
Calcium metabolism in health and disease
.
Clin J Am Soc Nephrol.
2010
;
5
(
5 suppl 1
):
S23
-
S30
.
28.
Di Buduo
CA
,
Moccia
F
,
Battiston
M
, et al
.
The importance of calcium in the regulation of megakaryocyte function
.
Haematologica.
2014
;
99
(
4
):
769
-
778
.
29.
Di Buduo
CA
,
Abbonante
V
,
Marty
C
, et al
.
Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms
.
Blood..
2020
;
135
(
2
):
133
-
144
.
30.
Shide
K
,
Shimoda
HK
,
Kumano
T
, et al
.
Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F
.
Leukemia.
2008
;
22
(
1
):
87
-
95
.
31.
Kacena
MA
,
Shivdasani
RA
,
Wilson
K
, et al
.
Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2
.
J Bone Miner Res.
2004
;
19
(
4
):
652
-
660
.
32.
Kacena
MA
,
Gundberg
CM
,
Nelson
T
,
Horowitz
MC
.
Loss of the transcription factor p45 NF-E2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype
.
Bone.
2005
;
36
(
2
):
215
-
223
.
33.
Zingariello
M
,
Martelli
F
,
Ciaffoni
F
, et al
.
Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis
.
Blood.
2013
;
121
(
17
):
3345
-
3363
.
34.
Villeval
JL
,
Cohen-Solal
K
,
Tulliez
M
, et al
.
High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice
.
Blood.
1997
;
90
(
11
):
4369
-
4383
.
35.
Stavnichuk
M
,
Nagy
Z
,
Senis
YA
,
Komarova
SV
.
Megakaryocyte-driven myelofibrosis leads to progressive osteosclerosis in G6b-B knockout mice
.
Blood.
2019
;
134
(
suppl_1
). Abstract
4199
.
36.
Stavnichuk
M
,
Tauer
JT
,
Nagy
Z
, et al
.
Severity of megakaryocyte-driven osteosclerosis in Mpig6b-deficient mice is sex-linked
.
J Bone Miner Res.
2021
;
36
(
4
):
803
-
813
.
37.
Hofmann
I
,
Geer
MJ
,
Vögtle
T
, et al
.
Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized mice
.
Blood.
2018
;
132
(
13
):
1399
-
1412
.
38.
Burkhardt
R
,
Frisch
B
,
Bartl
R
.
Bone biopsy in haematological disorders
.
J Clin Pathol.
1982
;
35
(
3
):
257
-
284
.
39.
Coindre
JM
,
Reiffers
J
,
Goussot
JF
,
De Mascarel
A
,
Broustet
A
.
Histomorphometric analysis of sclerotic bone from idiopathic myeloid metaplasia (nine cases)
.
J Pathol.
1984
;
144
(
3
):
163
-
169
.
40.
Thiele
J
,
Hoeppner
B
,
Wienhold
S
,
Schneider
G
,
Fischer
R
,
Zankovich
R
.
Osteoclasts and bone remodeling in chronic myeloproliferative disorders. A histochemical and morphometric study on trephine biopsies in 165 patients
.
Pathol Res Pract.
1989
;
184
(
6
):
591
-
599
.
41.
Poulsen
LW
,
Melsen
F
,
Bendix
K
.
A histomorphometric study of haematological disorders with respect to marrow fibrosis and osteosclerosis
.
APMIS.
1998
;
106
(
4
):
495
-
499
.
42.
Diamond
T
,
Smith
A
,
Schnier
R
,
Manoharan
A
.
Syndrome of myelofibrosis and osteosclerosis:a series of case reports and review of the literature
.
Bone.
2002
;
30
(
3
):
498
-
501
.
43.
Mellibovsky
L
,
Marinoso
ML
,
Cervantes
F
, et al
.
Relationship among densitometry, bone histomorphometry, and histologic stage in idiopathic myelofibrosis
.
Bone.
2004
;
34
(
2
):
330
-
335
.
44.
Schmidt
A
,
Blanchet
O
,
Dib
M
,
Basle
MF
,
Ifrah
N
,
Chappard
D
.
Bone changes in myelofibrosis with myeloid metaplasia: a histomorphometric and microcomputed tomographic study
.
Eur J Haematol.
2007
;
78
(
6
):
500
-
509
.
45.
Teman
CJ
,
Wilson
AR
,
Perkins
SL
,
Hickman
K
,
Prchal
JT
,
Salama
ME
.
Quantification of fibrosis and osteosclerosis in myeloproliferative neoplasms: a computer-assisted image study
.
Leukemia Res.
2010
;
34
(
7
):
871
-
876
.
46.
Farmer
S
,
Vestergaard
H
,
Hansen
S
, et al
.
Bone geometry, bone mineral density, and micro-architecture in patients with myelofibrosis: a cross-sectional study using DXA, HR-pQCT, and bone turnover markers [published correction appears in Int J Hemtol. 102:388]
.
Int J Hematol.
2015
;
102
(
1
):
67
-
75
.
47.
Lacout
C
,
Pisani
DF
,
Tulliez
M
,
Gachelin
FM
,
Vainchenker
W
,
Villeval
JL
.
JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis
.
Blood.
2006
;
108
(
5
):
1652
-
1660
.
48.
Oikonomidou
PR
,
Casu
C
,
Yang
Z
, et al
.
Polycythemia is associated with bone loss and reduced osteoblast activity in mice
.
Osteoporosis Int.
2016
;
27
(
4
):
1559
-
1568
.
49.
Steer
K
,
Stavnichuk
M
,
Morris
M
,
Komarova
SV
.
Bone health in patients with hematopoietic disorders of bone marrow origin: systematic review and meta-analysis
.
J Bone Miner Res.
2017
;
32
(
4
):
731
-
742
.
50.
Farmer
S
,
Horváth-Puhó
E
,
Vestergaard
H
,
Hermann
AP
,
Frederiksen
H
.
Chronic myeloproliferative neoplasms and risk of osteoporotic fractures: a nationwide population-based cohort study
.
Br J Haematol.
2013
;
163
(
5
):
603
-
610
.
51.
Kulak
CA
,
Dempster
DW
.
Bone histomorphometry: a concise review for endocrinologists and clinicians
.
Arq Bras Endocrinol Metab.
2010
;
54
(
2
):
87
-
98
.
52.
Choksi
P
,
Jepsen
KJ
,
Clines
GA
.
The challenges of diagnosing osteoporosis and the limitations of currently available tools
.
Clin Diabetes Endocrinol.
2018
;
4
:
12
.
53.
Wang
Y
,
Zuo
X
.
Cytokines frequently implicated in myeloproliferative neoplasms
.
Cytokine X.
2019
;
1
(
1
):
100005
.
54.
Ponce
CC
,
de Lourdes
FCM
,
Ihara
SS
,
Silva
MR
.
The relationship of the active and latent forms of TGF-β1 with marrow fibrosis in essential thrombocythemia and primary myelofibrosis
.
Med Oncol.
2012
;
29
(
4
):
2337
-
2344
.
55.
Nakayama
S
,
Yokote
T
,
Hiraoka
N
, et al
.
Transforming growth factor β- and interleukin 13-producing mast cells are associated with fibrosis in bone marrow
.
Hum Pathol.
2017
;
62
(
62
):
180
-
186
.
56.
Cacemiro
MDC
,
Cominal
JG
,
Tognon
R
, et al
.
Philadelphia-negative myeloproliferative neoplasms as disorders marked by cytokine modulation [published correction appears in Hematol Transfus Cell Ther. 2021;43(1):117]
.
Hematol Transfus Cell Ther.
2018
;
40
(
2
):
120
-
131
.
57.
Tefferi
A
,
Vaidya
R
,
Caramazza
D
,
Finke
C
,
Lasho
T
,
Pardanani
A
.
Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis:a comprehensive cytokine profiling study
.
J Clin Oncol.
2011
;
29
(
10
):
1356
-
1363
.
58.
Vaidya
R
,
Gangat
N
,
Jimma
T
, et al
.
Plasma cytokines in polycythemia vera:phenotypic correlates, prognostic relevance, and comparison with myelofibrosis
.
Am J Hematol.
2012
;
87
(
11
):
1003
-
1005
.
59.
Gersuk
GM
,
Carmel
R
,
Pattengale
PK
.
Platelet-derived growth factor concentrations in platelet-poor plasma and urine from patients with myeloproliferative disorders
.
Blood.
1989
;
74
(
7
):
2330
-
2334
.
60.
Martyré
MC
,
Magdelenat
H
,
Bryckaert
MC
,
Laine-Bidron
C
,
Calvo
F
.
Increased intraplatelet levels of platelet-derived growth factor and transforming growth factor-beta in patients with myelofibrosis with myeloid metaplasia
.
Br J Haematol.
1991
;
77
(
1
):
80
-
86
.
61.
Pourcelot
E
,
Trocme
C
,
Mondet
J
,
Bailly
S
,
Toussaint
B
,
Mossuz
P
.
Cytokine profiles in polycythemia vera and essential thrombocythemia patients:clinical implications
.
Exp Hematol.
2014
;
42
(
5
):
360
-
368
.
62.
Emadi
S
,
Clay
D
,
Desterke
C
, et al
.
IL-8 and its CXCR1 and CXCR2 receptors participate in the control of megakaryocytic proliferation, differentiation, and ploidy in myeloid metaplasia with myelofibrosis
.
Blood.
2005
;
105
(
2
):
464
-473.
63.
Panteli
K
,
Bai
M
,
Hatzimichael
E
,
Zagorianakou
N
,
Agnantis
NJ
,
Bourantas
K
.
Serum levels, and bone marrow immunohistochemical expression of, vascular endothelial growth factor in patients with chronic myeloproliferative diseases
.
Hematology.
2007
;
12
(
6
):
481
-
486
.
64.
Lekovic
D
,
Gotic
M
,
Skoda
R
, et al
.
Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms:clinicopathological and molecular correlations
.
Ann Hematol.
2017
;
96
(
3
):
393
-
404
.
65.
Tadmor
T
,
Bejar
J
,
Attias
D
, et al
.
The expression of lysyl-oxidase gene family members in myeloproliferative neoplasms
.
Am J Hematol.
2013
;
88
(
5
):
355
-
358
.
66.
Abbonante
V
,
Chitalia
V
,
Rosti
V
, et al
.
Upregulation of lysyl oxidase and adhesion to collagen of human megakaryocytes and platelets in primary myelofibrosis
.
Blood.
2017
;
130
(
6
):
829
-
831
.
67.
Gleitz
HFE
,
Dugourd
AJF
,
Leimkühler
NB
, et al
.
Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN
.
Blood.
2020
;
136
(
18
):
2051
-
2064
.
68.
Quinn
JM
,
Horwood
NJ
,
Elliott
J
,
Gillespie
MT
,
Martin
TJ
.
Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation
.
J Bone Miner Res.
2000
;
15
(
8
):
1459
-
1466
.
69.
Wei
S
,
Kitaura
H
,
Zhou
P
,
Ross
FP
,
Teitelbaum
SL
.
IL-1 mediates TNF-induced osteoclastogenesis
.
J Clin Invest.
2005
;
115
(
2
):
282
-
290
.
70.
Jimi
E
,
Nakamura
I
,
Duong
LT
, et al
.
Interleukin 1 induces multinucleation and bone-resorbing activity of osteoclasts in the absence of osteoblasts/stromal cells
.
Exp Cell Res.
1999
;
247
(
1
):
84
-
93
.
71.
Hengartner
N-E
,
Fiedler
J
,
Ignatius
A
,
Brenner
RE
.
IL-1β inhibits human osteoblast migration
.
Mol Med.
2013
;
19
(
1
):
36
-
42
.
72.
Bendre
MS
,
Margulies
AG
,
Walser
B
, et al
.
Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway
.
Cancer Res.
2005
;
65
(
23
):
11001
-
11009
.
73.
Bendre
MS
,
Montague
DC
,
Peery
T
,
Akel
NS
,
Gaddy
D
,
Suva
LJ
.
Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease
.
Bone.
2003
;
33
(
1
):
28
-
37
.
74.
Leiva
O
,
Ng
SK
,
Matsuura
S
, et al
.
Novel lysyl oxidase inhibitors attenuate hallmarks of primary myelofibrosis in mice
.
Int J Hematol.
2019
;
110
(
6
):
699
-
708
.
75.
Turecek
C
,
Fratzl-Zelman
N
,
Rumpler
M
, et al
.
Collagen cross-linking influences osteoblastic differentiation
.
Calcif Tissue Int.
2008
;
82
(
5
):
392
-
400
.
76.
Khosravi
R
,
Sodek
KL
,
Xu
WP
, et al
.
A novel function for lysyl oxidase in pluripotent mesenchymal cell proliferation and relevance to inflammation-associated osteopenia
.
PloS One.
2014
;
9
(
6
):
e100669
.
77.
Sharma-Bhandari
A
,
Park
SH
,
Kim
JY
,
Oh
J
,
Kim
Y
.
Lysyl oxidase modulates the osteoblast differentiation of primary mouse calvaria cells
.
Int J Mol Med.
2015
;
36
(
6
):
1664
-
1670
.
78.
Pischon
N
,
Mäki
JM
,
Weisshaupt
P
, et al
.
Lysyl oxidase (lox) gene deficiency affects osteoblastic phenotype
.
Calcif Tissue Int.
2009
;
85
(
2
):
119
-
126
.
79.
Pischon
N
,
Darbois
LM
,
Palamakumbura
AH
,
Kessler
E
,
Trackman
PC
.
Regulation of collagen deposition and lysyl oxidase by tumor necrosis factor-alpha in osteoblasts
.
J Biol Chem.
2004
;
279
(
29
):
30060
-
30065
.
80.
Paschalis
EP
,
Tatakis
DN
,
Robins
S
, et al
.
Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral
.
Bone.
2011
;
49
(
6
):
1232
-
1241
.
81.
McNerny
EM
,
Gong
B
,
Morris
MD
,
Kohn
DH
.
Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model
.
J Bone Miner Res.
2015
;
30
(
3
):
455
-
464
.
82.
Matsunobu
T
,
Torigoe
K
,
Ishikawa
M
, et al
.
Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development
.
Dev Biol.
2009
;
332
(
2
):
325
-
338
.
83.
Kassem
M
,
Kveiborg
M
,
Eriksen
EF
.
Production and action of transforming growth factor-beta in human osteoblast cultures:dependence on cell differentiation and modulation by calcitriol
.
Eur J Clin Invest.
2000
;
30
(
5
):
429
-
437
.
84.
Karst
M
,
Gorny
G
,
Galvin
RJ
,
Oursler
MJ
.
Roles of stromal cell RANKL, OPG, and M-CSF expression in biphasic TGF-beta regulation of osteoclast differentiation
.
J Cell Physiol.
2004
;
200
(
1
):
99
-
106
.
85.
Graham
S
,
Leonidou
A
,
Lester
M
,
Heliotis
M
,
Mantalaris
A
,
Tsiridis
E
.
Investigating the role of PDGF as a potential drug therapy in bone formation and fracture healing
.
Expert Opin Investig Drugs.
2009
;
18
(
11
):
1633
-
1654
.
86.
Tanaka
H
,
Liang
CT
.
Effect of platelet-derived growth factor on DNA synthesis and gene expression in bone marrow stromal cells derived from adult and old rats
.
J Cell Physiol.
1995
;
164
(
2
):
367
-
375
.
87.
Tsukamoto
T
,
Matsui
T
,
Fukase
M
,
Fujita
T
.
Platelet-derived growth factor B chain homodimer enhances chemotaxis and DNA synthesis in normal osteoblast-like cells (MC3T3-E1)
.
Biochem Biophys Res Commun.
1991
;
175
(
3
):
745
-751.
88.
Cassiede
P
,
Dennis
JE
,
Ma
F
,
Caplan
AI
.
Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro
.
J Bone Miner Res.
1996
;
11
(
7
):
1264
-
1273
.
89.
Gruber
R
,
Karreth
F
,
Kandler
B
, et al
.
Platelet-released supernatants increase migration and proliferation, and decrease osteogenic differentiation of bone marrow-derived mesenchymal progenitor cells under in vitro conditions
.
Platelets.
2004
;
15
(
1
):
29
-
35
.
90.
Zhang
M
,
Yu
W
,
Niibe
K
, et al
.
The effects of platelet-derived growth factor-BB on bone marrow stromal cell-mediated vascularized bone regeneration
.
Stem Cells Int.
2018
;
2018
:
3272098
.
91.
Li
DQ
,
Wan
QL
,
Pathak
JL
,
Li
ZB
.
Platelet-derived growth factor BB enhances osteoclast formation and osteoclast precursor cell chemotaxis
.
J Bone Miner Metab.
2017
;
35
(
4
):
355
-
365
.
92.
Lam
J
,
Takeshita
S
,
Barker
JE
,
Kanagawa
O
,
Ross
FP
,
Teitelbaum
SL
.
TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand
.
J Clin Invest.
2000
;
106
(
12
):
1481
-
1488
.
93.
Kudo
O
,
Fujikawa
Y
,
Itonaga
I
,
Sabokbar
A
,
Torisu
T
,
Athanasou
NA
.
Proinflammatory cytokine (TNFalpha/IL-1alpha) induction of human osteoclast formation
.
J Pathol.
2002
;
198
(
2
):
220
-
227
.
94.
Hess
K
,
Ushmorov
A
,
Fiedler
J
,
Brenner
RE
,
Wirth
T
.
TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway
.
Bone.
2009
;
45
(
2
):
367
-
376
.
95.
Percival
CJ
,
Richtsmeier
JT
.
Angiogenesis and intramembranous osteogenesis
.
Dev Dyn.
2013
;
242
(
8
):
909
-
922
.
96.
Carlevaro
MF
,
Cermelli
S
,
Cancedda
R
,
Descalzi Cancedda
F
.
Vascular endothelial growth factor (VEGF) in cartilage neovascularization and chondrocyte differentiation: auto-paracrine role during endochondral bone formation
.
J Cell Sci.
2000
;
113
(
Pt 1
):
59
-
69
.
97.
Mayer
H
,
Bertram
H
,
Lindenmaier
W
,
Korff
T
,
Weber
H
,
Weich
H
.
Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells:autocrine and paracrine role on osteoblastic and endothelial differentiation
.
J Cell Biochem.
2005
;
95
(
4
):
827
-
839
.
98.
Liu
Y
,
Berendsen
AD
,
Jia
S
, et al
.
Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation
.
J Clin Invest.
2012
;
122
(
9
):
3101
-
3113
.
99.
Yang
Q
,
McHugh
KP
,
Patntirapong
S
,
Gu
X
,
Wunderlich
L
,
Hauschka
PV
.
VEGF enhancement of osteoclast survival and bone resorption involves VEGF receptor-2 signaling and beta3-integrin
.
Matrix Biol.
2008
;
27
(
7
):
589
-
599
.
100.
Palmqvist
P
,
Persson
E
,
Conaway
HH
,
Lerner
UH
.
IL-6, leukemia inhibitory factor, and oncostatin M stimulate bone resorption and regulate the expression of receptor activator of NF-kappa B ligand, osteoprotegerin, and receptor activator of NF-kappa B in mouse calvariae
.
J Immunol.
2002
;
169
(
6
):
3353
-
3362
.
101.
Walker
EC
,
McGregor
NE
,
Poulton
IJ
, et al
.
Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice
.
J Clin Invest.
2010
;
120
(
2
):
582
-
592
.
102.
Yoshitake
F
,
Itoh
S
,
Narita
H
,
Ishihara
K
,
Ebisu
S
.
Interleukin-6 directly inhibits osteoclast differentiation by suppressing receptor activator of NF-kappaB signaling pathways
.
J Biol Chem.
2008
;
283
(
17
):
11535
-
11540
.
103.
Malara
A
,
Abbonante
V
,
Di Buduo
CA
,
Tozzi
L
,
Currao
M
,
Balduini
A
.
The secret life of a megakaryocyte:emerging roles in bone marrow homeostasis control
.
Cell Mol Life Sci.
2015
;
72
(
8
):
1517
-
1536
.
104.
Olson
TS
,
Caselli
A
,
Otsuru
S
, et al
.
Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning
.
Blood.
2013
;
121
(
26
):
5238
-
5249
.
105.
Fox
SB
,
Lorenzen
J
,
Heryet
A
,
Jones
M
,
Gatter
KC
,
Mason
DY
.
Megakaryocytes in myelodysplasia: an immunohistochemical study on bone marrow trephines
.
Histopathology.
1990
;
17
(
1
):
69
-
74
.
106.
Thiele
J
,
Quitmann
H
,
Wagner
S
,
Fischer
R
.
Dysmegakaryopoiesis in myelodysplastic syndromes (MDS): an immunomorphometric study of bone marrow trephine biopsy specimens.
J Clin Pathol.
1991
;
44
(
4
):
300
-
305
.
107.
Ghai
S
,
Rai
S
.
Megakaryocytic morphology in Janus kinase 2 V617F positive myeloproliferative neoplasm
.
South Asian J Cancer.
2017
;
6
(
2
):
75
-
78
.
108.
Soves
CP
,
Miller
JD
,
Begun
DL
,
Taichman
RS
,
Hankenson
KD
,
Goldstein
SA
.
Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation
.
Bone.
2014
;
66
(
66
):
111
-
120
.
109.
Kacena
MA
,
Nelson
T
,
Clough
ME
, et al
.
Megakaryocyte-mediated inhibition of osteoclast development
.
Bone.
2006
;
39
(
5
):
991
-
999
.
110.
Bord
S
,
Frith
E
,
Ireland
DC
,
Scott
MA
,
Craig
JI
,
Compston
JE
.
Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL
.
Bone.
2005
;
36
(
5
):
812
-
819
.
111.
Beeton
CA
,
Bord
S
,
Ireland
D
,
Compston
JE
.
Osteoclast formation and bone resorption are inhibited by megakaryocytes
.
Bone.
2006
;
39
(
5
):
985
-
990
.
112.
Ciovacco
WA
,
Goldberg
CG
,
Taylor
AF
, et al
.
The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation
.
Bone.
2009
;
44
(
1
):
80
-
86
.
113.
Lemieux
JM
,
Horowitz
MC
,
Kacena
MA
.
Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation
.
J Cell Biochem.
2010
;
109
(
5
):
927
-
932
.
114.
Kacena
MA
,
Eleniste
PP
,
Cheng
YH
, et al
.
Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts
.
J Biol Chem.
2012
;
287
(
21
):
17257
-
17268
.
115.
Cheng
YH
,
Streicher
DA
,
Waning
DL
,
Chitteti
BR
,
Gerard-O'Riley
R
,
Horowitz
MC
et al
.
Signaling pathways involved in megakaryocyte-mediated proliferation of osteoblast lineage cells
.
J Cell Physiol.
2015
;
230
(
3
):
578
-
586
.
116.
Maupin
KA
,
Himes
ER
,
Plett
AP
, et al
.
Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass
.
Bone.
2019
;
127
(
127
):
452
-
459
.
117.
Ciovacco
WA
,
Cheng
YH
,
Horowitz
MC
,
Kacena
MA
.
Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation
.
J Cell Biochem.
2010
;
109
(
4
):
774
-
781
.
118.
Fitter
S
,
Dewar
AL
,
Kostakis
P
,
To
LB
,
Hughes
TP
,
Roberts
MM
et al
.
Long-term imatinib therapy promotes bone formation in CML patients
.
Blood.
2008
;
111
(
5
):
2538
-
2547
.
119.
Smerdely
P
,
Seller
M
,
Smith
A
,
Day
P
,
Diamond
T
.
Predictors of bone mass in healthy older men in the community
.
Med J Aust.
2000
;
173
(
4
):
183
-
186
.
120.
Courpron
P
,
Meunier
P
,
Edouard
C
,
Bernard
J
,
Bringuier
JP
,
Vignon
G
.
Donnèes histologiques quantitatives sur le vieillissement osseux humain [Quantitative histological data on the aging of human bone]
.
Rev Rhum Mal Osteoartic.
1973
;
40
(
7
):
469
483
.
121.
Meunier
PJ
,
Courpron
P
. Iliac trabecular bone volume in 236 controls. Representativeness of iliac samples. In:
Jaworski
ZFG
. ed.
Proceedings of the First Workshop on Bone Morphometry.
Ottawa, Canada
:
University of Ottawa Press
,
1973
;
100
.
122.
Melsen
F
,
Melsen
B
,
Mosekilde
L
,
Bergmann
S
.
Histomorphometric analysis of normal bone from the iliac crest.
Acta Pathol Microbiol Scand A.
1978
;
86
(
1
):
70
81
.
You do not currently have access to this content.

Sign in via your Institution