• PARP-2 deficiency prevents c-Myc–driven B-cell lymphoma progression, whereas PARP-1 deficiency accelerates lymphomagenesis.

  • PARP-2 limits replication stress of c-Myc–overexpressing B cells and promotes cell survival, whereas PARP-1 affects regulatory T cells.

Dysregulation of the c-Myc oncogene occurs in a wide variety of hematologic malignancies, and its overexpression has been linked with aggressive tumor progression. Here, we show that poly (ADP-ribose) polymerase 1 (PARP-1) and PARP-2 exert opposing influences on progression of c-Myc–driven B-cell lymphoma. PARP-1 and PARP-2 catalyze the synthesis and transfer of ADP-ribose units onto amino acid residues of acceptor proteins in response to DNA strand breaks, playing a central role in the response to DNA damage. Accordingly, PARP inhibitors have emerged as promising new cancer therapeutics. However, the inhibitors currently available for clinical use are not able to discriminate between individual PARP proteins. We found that genetic deletion of PARP-2 prevents c-Myc–driven B-cell lymphoma, whereas PARP-1 deficiency accelerates lymphomagenesis in the Eμ-Myc mouse model of aggressive B-cell lymphoma. Loss of PARP-2 aggravates replication stress in preleukemic Eμ-Myc B cells, resulting in accumulation of DNA damage and concomitant cell death that restricts the c-Myc–driven expansion of B cells, thereby providing protection against B-cell lymphoma. In contrast, PARP-1 deficiency induces a proinflammatory response and an increase in regulatory T cells, likely contributing to immune escape of B-cell lymphoma, resulting in an acceleration of lymphomagenesis. These findings pinpoint specific functions for PARP-1 and PARP-2 in c-Myc–driven lymphomagenesis with antagonistic consequences that may help inform the design of new PARP-centered therapeutic strategies, with selective PARP-2 inhibition potentially representing a new therapeutic approach for the treatment of c-Myc–driven tumors.

1.
Yelamos
J
,
Farres
J
,
Llacuna
L
,
Ampurdanes
C
,
Martin-Caballero
J.
PARP-1 and PARP-2: new players in tumour development
.
Am J Cancer Res.
2011
;
1
(
3
):
328
-
346
.
2.
Suskiewicz
MJ
,
Palazzo
L
,
Hughes
R
,
Ahel
I.
Progress and outlook in studying the substrate specificities of PARPs and related enzymes
.
FEBS J.
2021
;
288
(
7
):
2131
-
2142
.
3.
Bai
P.
Biology of poly(ADP-ribose) polymerases: the factotums of cell maintenance
.
Mol Cell.
2015
;
58
(
6
):
947
-
958
.
4.
Azarm
K
,
Smith
S.
Nuclear PARPs and genome integrity
.
Genes Dev.
2020
;
34
(
5-6
):
285
-
301
.
5.
Slade
D.
PARP and PARG inhibitors in cancer treatment.
Genes Dev.
2020
;
34
(
5-6
):
360
-
394
.
6.
Pilger
D
,
Seymour
LW
,
Jackson
SP.
Interfaces between cellular responses to DNA damage and cancer immunotherapy
.
Genes Dev.
2021
;
35
(
9-10
):
602
-
618
.
7.
Dantzer
F
,
Mark
M
,
Quenet
D
, et al
.
Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis
.
Proc Natl Acad Sci USA.
2006
;
103
(
40
):
14854
-
14859
.
8.
Yélamos
J
,
Monreal
Y
,
Saenz
L
, et al
.
PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes
.
EMBO J.
2006
;
25
(
18
):
4350
-
4360
.
9.
Nicolás
L
,
Martínez
C
,
Baró
C
, et al
.
Loss of poly(ADP-ribose) polymerase-2 leads to rapid development of spontaneous T-cell lymphomas in p53-deficient mice
.
Oncogene.
2010
;
29
(
19
):
2877
-
2883
.
10.
Farrés
J
,
Martín-Caballero
J
,
Martínez
C
, et al
.
Parp-2 is required to maintain hematopoiesis following sublethal γ-irradiation in mice
.
Blood.
2013
;
122
(
1
):
44
-
54
.
11.
Farrés
J
,
Llacuna
L
,
Martin-Caballero
J
, et al
.
PARP-2 sustains erythropoiesis in mice by limiting replicative stress in erythroid progenitors
.
Cell Death Differ.
2015
;
22
(
7
):
1144
-
1157
.
12.
Murga
M
,
Bunting
S
,
Montaña
MF
, et al
.
A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging
.
Nat Genet.
2009
;
41
(
8
):
891
-
898
.
13.
Gaillard
H
,
García-Muse
T
,
Aguilera
A.
Replication stress and cancer
.
Nat Rev Cancer.
2015
;
15
(
5
):
276
-
289
.
14.
Macheret
M
,
Halazonetis
TD.
DNA replication stress as a hallmark of cancer
.
Annu Rev Pathol.
2015
;
10
:
425
-
448
.
15.
Johnson
NA
,
Slack
GW
,
Savage
KJ
, et al
.
Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone
.
J Clin Oncol.
2012
;
30
(
28
):
3452
-
3459
.
16.
Klapproth
K
,
Wirth
T.
Advances in the understanding of MYC-induced lymphomagenesis
.
Br J Haematol.
2010
;
149
(
4
):
484
-
497
.
17.
Harris
AW
,
Pinkert
CA
,
Crawford
M
,
Langdon
WY
,
Brinster
RL
,
Adams
JM.
The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells
.
J Exp Med.
1988
;
167
(
2
):
353
-
371
.
18.
Eischen
CM
,
Weber
JD
,
Roussel
MF
,
Sherr
CJ
,
Cleveland
JL.
Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis
.
Genes Dev.
1999
;
13
(
20
):
2658
-
2669
.
19.
Strasser
A
,
Harris
AW
,
Bath
ML
,
Cory
S.
Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2
.
Nature.
1990
;
348
(
6299
):
331
-
333
.
20.
de Murcia
JM
,
Niedergang
C
,
Trucco
C
, et al
.
Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells
.
Proc Natl Acad Sci USA.
1997
;
94
(
14
):
7303
-
7307
.
21.
Ménissier de Murcia
J
,
Ricoul
M
,
Tartier
L
, et al
.
Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse
.
EMBO J.
2003
;
22
(
9
):
2255
-
2263
.
22.
Adams
JM
,
Harris
AW
,
Pinkert
CA
, et al
.
The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice
.
Nature.
1985
;
318
(
6046
):
533
-
538
.
23.
Galindo-Campos
MA
,
Bedora-Faure
M
,
Farrés
J
, et al
.
Coordinated signals from the DNA repair enzymes PARP-1 and PARP-2 promotes B-cell development and function
.
Cell Death Differ.
2019
;
26
(
12
):
2667
-
2681
.
24.
Langdon
WY
,
Harris
AW
,
Cory
S
,
Adams
JM.
The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice
.
Cell.
1986
;
47
(
1
):
11
-
18
.
25.
Fernandez-Capetillo
O
,
Lee
A
,
Nussenzweig
M
,
Nussenzweig
A.
H2AX: the histone guardian of the genome
.
DNA Repair (Amst).
2004
;
3
(
8-9
):
959
-
967
.
26.
Toledo
LI
,
Murga
M
,
Zur
R
, et al
.
A cell-based screen identifies ATR inhibitors with synthetic lethal properties for cancer-associated mutations
.
Nat Struct Mol Biol.
2011
;
18
(
6
):
721
-
727
.
27.
Syljuåsen
RG
,
Sørensen
CS
,
Hansen
LT
, et al
.
Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage
.
Mol Cell Biol.
2005
;
25
(
9
):
3553
-
3562
.
28.
Murga
M
,
Campaner
S
,
Lopez-Contreras
AJ
, et al
.
Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors
.
Nat Struct Mol Biol.
2011
;
18
(
12
):
1331
-
1335
.
29.
Liu
S
,
Opiyo
SO
,
Manthey
K
, et al
.
Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress
.
Nucleic Acids Res.
2012
;
40
(
21
):
10780
-
10794
.
30.
López-Contreras
AJ
,
Fernandez-Capetillo
O.
The ATR barrier to replication-born DNA damage
.
DNA Repair (Amst).
2010
;
9
(
12
):
1249
-
1255
.
31.
Michalak
EM
,
Jansen
ES
,
Happo
L
, et al
.
Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis
.
Cell Death Differ.
2009
;
16
(
5
):
684
-
696
.
32.
Gui
B
,
Gui
F
,
Takai
T
, et al
.
Selective targeting of PARP-2 inhibits androgen receptor signaling and prostate cancer growth through disruption of FOXA1 function
.
Proc Natl Acad Sci USA.
2019
;
116
(
29
):
14573
-
14582
.
33.
Ahmetlić
F
,
Riedel
T
,
Hömberg
N
, et al
.
Regulatory T cells in an endogenous mouse lymphoma recognize specific antigen peptides and contribute to immune escape
.
Cancer Immunol Res.
2019
;
7
(
4
):
600
-
608
.
34.
Nasta
F
,
Laudisi
F
,
Sambucci
M
,
Rosado
MM
,
Pioli
C.
Increased Foxp3+ regulatory T cells in poly(ADP-Ribose) polymerase-1 deficiency
.
J Immunol.
2010
;
184
(
7
):
3470
-
3477
.
35.
Navarro
J
,
Gozalbo-López
B
,
Méndez
AC
, et al
.
PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas
.
Sci Rep.
2017
;
7
:
41962
.
36.
Chen
W
,
Jin
W
,
Hardegen
N
, et al
.
Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3
.
J Exp Med.
2003
;
198
(
12
):
1875
-
1886
.
37.
Kuzyk
A
,
Mai
S.
c-MYC-induced genomic instability
.
Cold Spring Harb Perspect Med.
2014
;
4
(
4
):
a014373
.
38.
Kumari
A
,
Folk
WP
,
Sakamuro
D.
The dual roles of MYC in genomic instability and cancer chemoresistance
.
Genes (Basel).
2017
;
8
(
6
):
158
.
39.
Ward
IM
,
Chen
J.
Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress
.
J Biol Chem.
2001
;
276
(
51
):
47759
-
47762
.
40.
Furuta
T
,
Takemura
H
,
Liao
Z-Y
, et al
.
Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes
.
J Biol Chem.
2003
;
278
(
22
):
20303
-
20312
.
41.
Ewald
B
,
Sampath
D
,
Plunkett
W.
H2AX phosphorylation marks gemcitabine-induced stalled replication forks and their collapse upon S-phase checkpoint abrogation
.
Mol Cancer Ther.
2007
;
6
(
4
):
1239
-
1248
.
42.
Gagou
ME
,
Zuazua-Villar
P
,
Meuth
M.
Enhanced H2AX phosphorylation, DNA replication fork arrest, and cell death in the absence of Chk1
.
Mol Biol Cell.
2010
;
21
(
5
):
739
-
752
.
43.
Fischer
M.
Census and evaluation of p53 target genes
.
Oncogene.
2017
;
36
(
28
):
3943
-
3956
.
44.
Happo
L
,
Cragg
MS
,
Phipson
B
, et al
.
Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim
.
Blood.
2010
;
116
(
24
):
5256
-
5267
.
45.
Bouillet
P
,
Metcalf
D
,
Huang
DCS
, et al
.
Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity
.
Science.
1999
;
286
(
5445
):
1735
-
1738
.
46.
Villunger
A
,
Michalak
EM
,
Coultas
L
, et al
.
p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa
.
Science.
2003
;
302
(
5647
):
1036
-
1038
.
47.
Egle
A
,
Harris
AW
,
Bouillet
P
,
Cory
S.
Bim is a suppressor of Myc-induced mouse B cell leukemia
.
Proc Natl Acad Sci USA.
2004
;
101
(
16
):
6164
-
6169
.
48.
Garrison
SP
,
Jeffers
JR
,
Yang
C
, et al
.
Selection against PUMA gene expression in Myc-driven B-cell lymphomagenesis
.
Mol Cell Biol.
2008
;
28
(
17
):
5391
-
5402
.
49.
Valente
LJ
,
Grabow
S
,
Vandenberg
CJ
,
Strasser
A
,
Janic
A.
Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53
.
Oncogene.
2016
;
35
(
29
):
3866
-
3871
.
50.
Szántó
M
,
Brunyánszki
A
,
Kiss
B
, et al
.
Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein
.
Cell Mol Life Sci.
2012
;
69
(
24
):
4079
-
4092
.
51.
Dominguez-Sola
D
,
Gautier
J.
MYC and the control of DNA replication
.
Cold Spring Harb Perspect Med.
2014
;
4
(
6
):
a014423
.
52.
Toledo
L
,
Neelsen
KJ
,
Lukas
J.
Replication catastrophe: when a checkpoint fails because of exhaustion
.
Mol Cell.
2017
;
66
(
6
):
735
-
749
.
53.
Liao
H
,
Ji
F
,
Helleday
T
,
Ying
S.
Mechanisms for stalled replication fork stabilization: new targets for synthetic lethality strategies in cancer treatments
.
EMBO Rep.
2018
;
19
(
9
):
e46263
.
54.
Miyoshi
T
,
Makino
T
,
Moran
JV.
Poly(ADP-ribose) polymerase 2 recruits replication protein A to sites of LINE-1 integration to facilitate retrotransposition
.
Mol Cell.
2019
;
75
(
6
):
1286
-
1298.e12
.
55.
Ronson
GE
,
Piberger
AL
,
Higgs
MR
, et al
.
PARP1 and PARP2 stabilise replication forks at base excision repair intermediates through Fbh1-dependent Rad51 regulation
.
Nat Commun.
2018
;
9
(
1
):
746
.
56.
Coussens
LM
,
Werb
Z.
Inflammation and cancer
.
Nature.
2002
;
420
(
6917
):
860
-
867
.
57.
Fehr
AR
,
Singh
SA
,
Kerr
CM
,
Mukai
S
,
Higashi
H
,
Aikawa
M.
The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions
.
Genes Dev.
2020
;
34
(
5-6
):
341
-
359
.
58.
Carrillo
A
,
Monreal
Y
,
Ramírez
P
, et al
.
Transcription regulation of TNF-alpha-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells
.
Nucleic Acids Res.
2004
;
32
(
2
):
757
-
766
.
59.
Dörsam
B
,
Seiwert
N
,
Foersch
S
, et al
.
PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression
.
Proc Natl Acad Sci USA.
2018
;
115
(
17
):
E4061
-
E4070
.
60.
Sheng
J
,
Chen
W
,
Zhu
HJ.
The immune suppressive function of transforming growth factor-β (TGF-β) in human diseases
.
Growth Factors.
2015
;
33
(
2
):
92
-
101
.
61.
Glasner
A
,
Plitas
G.
Tumor resident regulatory T cells
.
Semin Immunol.
2021
;
24
:
101476
.
62.
Parvin
S
,
Ramirez-Labrada
A
,
Aumann
S
, et al
.
LMO2 confers synthetic lethality to PARP inhibition in DLBCL
.
Cancer Cell.
2019
;
36
(
3
):
237
-
249.e6
.
You do not currently have access to this content.

Sign in via your Institution

Sign In