• A pathology review of 553 lymphoid neoplasm cases among atomic bomb survivors provides WHO classification subtype distribution.

  • Significant radiation dose response observed for precursor lymphoid neoplasms but not for mature lymphoid neoplasms or HL.

Epidemiological data have provided limited and inconsistent evidence on the relationship between radiation exposure and lymphoid neoplasms. We classified 553 lymphoid neoplasm cases diagnosed between 1950 and 1994 in the Life Span Study cohort of atomic bomb survivors into World Health Organization subtypes. Mature B-cell neoplasms represented 58%, mature T-cell and natural killer (NK)-cell neoplasms 20%, precursor cell neoplasms 5%, and Hodgkin lymphoma (HL) 3%, with the remaining 15% classified as non-Hodgkin lymphoid (NHL) neoplasms or lymphoid neoplasms not otherwise specified. We used Poisson regression methods to assess the relationship between radiation exposure and the more common subtypes. As in earlier reports, a significant dose response for NHL neoplasms as a group was seen for males but not females. However, subtype analyses showed that radiation dose was strongly associated with increased precursor cell neoplasms rates, with an estimated excess relative risk per Gy of 16 (95% Confidence interval: 7.0, >533) at age 50. The current data based primarily of tissue-based diagnoses suggest that the association between radiation dose and lymphoid neoplasms as a group is largely driven by the radiation effect on precursor cell neoplasms while presenting no evidence of a radiation dose response for major categories of mature cell neoplasms, either B- or T-/NK-cell, or more specific disease entities (diffuse large B-cell lymphoma, plasma cell myeloma, adult T-cell leukemia/lymphoma) or HL.

1.
Jaffe
E
,
Harris
N
,
Stein
H
,
Vardiman
J.
World Health Organization Classification of Tumours of Hematopoetic and Lymphoid TIssues.
Lyon
:
International Agency for Research on Cancer
;
2001
2.
Cerhan
JR
,
Vajdic
CM
,
Spinelli
JJ.
The non-Hodgkin lymphomas. In:
Thun
ML
,
Linet
MS
,
Cerhan
JR
,
Haiman
C
,
Schottenfeld
D
, eds.
Cancer Epidemiology and Prevention
:
Oxford University Press
;
2017
:
767
-
796
.
3.
Morton
LM
,
Wang
SS
,
Devesa
SS
,
Hartge
P
,
Weisenburger
DD
,
Linet
MS.
Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001
.
Blood.
2006
;
107
(
1
):
265
-
276
.
4.
UNSCEAR
. UNSCEAR 2006 Report. Volume I, Scientific Annex A: United Nations;
2008
.
5.
Hsu
WL
,
Preston
DL
,
Soda
M
, et al
.
The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950-2001
.
Radiat Res.
2013
;
179
(
3
):
361
-
382
.
6.
Ozasa
K
,
Shimizu
Y
,
Suyama
A
, et al
.
Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases
.
Radiat Res.
2012
;
177
(
3
):
229
-
243
.
7.
Grant
EJ
,
Brenner
A
,
Sugiyama
H
, et al
.
Solid cancer incidence among the life span study of atomic bomb survivors: 1958-2009
.
Radiat Res.
2017
;
187
(
5
):
513
-
537
.
8.
Preston
DL
,
Kusumi
S
,
Tomonaga
M
, et al
.
Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987
.
Radiat Res.
1994
;
137
(
2 Suppl
):
S68
-
S97
.
9.
Matsuo
T
,
Tomonaga
M
,
Bennett
JM
, et al
.
Reclassification of leukemia among A-bomb survivors in Nagasaki using French-American-British (FAB) classification for acute leukemia
.
Jpn J Clin Oncol.
1988
;
18
(
2
):
91
-
96
.
10.
Bennett
JM
,
Catovsky
D
,
Daniel
MT
, et al
.
Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group
.
Br J Haematol.
1976
;
33
(
4
):
451
-
458
.
11.
Mabuchi
K
,
Soda
M
,
Ron
E
, et al
.
Cancer incidence in atomic bomb survivors. Part I: Use of the tumor registries in Hiroshima and Nagasaki for incidence studies
.
Radiat Res.
1994
;
137
(
2 Suppl
):
S1
-
S16
.
12.
Swerdlow
SH
,
Campo
E
,
Pileri
SA
, et al
. WHO classification of tumours of haematologic and lymphoid tissues. In:
Swerdlow
SH
,
Campo
E
,
Harris
NL
,
Jaffe
ES
,
Pileri
SA
,
Stein
H
,
Thiele
J
, eds.
WHO Classification of Tumours.
Volume
2
.
Revised 4th ed. Lyon
:
International Agency for Research on Cancer
;
2008
.
13.
Sposto
R
,
Preston
DL.
Correcting for catchment area nonresidency in studies based on tumor-registry data (RERF-CR--1-92). Available at: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=25027998. Accessed 12 Oct 2021.
14.
Preston
DL
,
Lubin
J
,
Pierce
DA
,
McConney
ME
,
Shilinikova
NS.
Epicure User Guide.
Vol.
2.01
. Ottawa:
Risk Sciences International
.
2015
http://epicurehelp.risksciences.com/index.html#!Documents/userguide.htm
15.
Cullings
HM
,
Grant
EJ
,
Egbert
SD
, et al
.
DS02R1: improvements to atomic bomb survivors’ input data and implementation of dosimetry system 2002 (DS02) and resulting changes in estimated doses
.
Health Phys.
2017
;
112
(
1
):
56
-
97
.
16.
Tajima
K
,
Hinuma
Y.
In:
Hinuma
Y
,
Takatsuki
K
,
Yoshida
M
, eds.
Epidemiology of HTLV-I/II in Japan and in the world. Advances in adult T-cell leuekemia and HTLV-I research.
Tokoyo
:
Japan Scientifc Society Press
;
1992
:
129
-
150
.
17.
Neriishi
K
,
Yoshimoto
Y
,
Carter
RL
, et al
.
Monoclonal gammopathy in atomic bomb survivors
.
Radiat Res.
1993
;
133
(
3
):
351
-
359
.
18.
Muto
R
,
Miyoshi
H
,
Sato
K
, et al
.
Epidemiology and secular trends of malignant lymphoma in Japan: analysis of 9426 cases according to the World Health Organization classification
.
Cancer Med.
2018
;
7
(
11
):
5843
-
5858
.
19.
Kusunoki
Y
,
Hayashi
T.
Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors
.
Int J Radiat Biol.
2008
;
84
(
1
):
1
-
14
.
20.
Kusunoki
Y
,
Hirai
Y
,
Hakoda
M
,
Kyoizumi
S.
Uneven distributions of naïve and memory T cells in the CD4 and CD8 T-cell populations derived from a single stem cell in an atomic bomb survivor: implications for the origins of the memory T-cell pools in adulthood
.
Radiat Res.
2002
;
157
(
5
):
493
-
499
.
21.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
DC
, et al;
ICGC PedBrain
.
Signatures of mutational processes in human cancer [published correction appears in Nature. 2013;502(7470):258]
.
Nature.
2013
;
500
(
7463
):
415
-
421
.
22.
Scott
DW
,
Gascoyne
RD.
The tumour microenvironment in B cell lymphomas
.
Nat Rev Cancer.
2014
;
14
(
8
):
517
-
534
.
23.
Ferrando
AA.
The role of NOTCH1 signaling in T-ALL
.
Hematology (Am Soc Hematol Educ Program).
2009
;
2009
(
1
):
353
-
361
.
24.
Takatori
M
,
Sakihama
S
,
Miyara
M
, et al
.
A new diagnostic algorithm using biopsy specimens in adult T-cell leukemia/lymphoma: combination of RNA in situ hybridization and quantitative PCR for HTLV-1
.
Mod Pathol.
2021
;
34
(
1
):
51
-
58
.
You do not currently have access to this content.

Sign in via your Institution

Sign In