• Syndecan-2 expression enriches for LT-HSCs.

  • Syndecan-2 regulates HSC self-renewal via control of stem cell quiescence.

The discovery of novel hematopoietic stem cell (HSC) surface markers can enhance understanding of HSC identity and function. We have discovered a population of primitive bone marrow (BM) HSCs distinguished by their expression of the heparan sulfate proteoglycan Syndecan-2, which serves as both a marker and a regulator of HSC function. Syndecan-2 expression was increased 10-fold in CD150+CD48CD34c-Kit+Sca-1+Lineage cells (long-term HSCs [LT-HSCs]) compared with differentiated hematopoietic cells. Isolation of BM cells based solely on syndecan-2 surface expression produced a 24-fold enrichment for LT-HSCs and sixfold enrichment for α-catulin+c-kit+ HSCs, and yielded HSCs with superior in vivo repopulating capacity compared with CD150+ cells. Competitive repopulation assays revealed the HSC frequency to be 17-fold higher in syndecan-2+CD34KSL cells compared with syndecan-2CD34KSL cells and indistinguishable from CD150+CD34KSL cells. Syndecan-2 expression also identified nearly all repopulating HSCs within the CD150+CD34KSL population. Mechanistically, syndecan-2 regulates HSC repopulating capacity through control of expression of Cdkn1c (p57) and HSC quiescence. Loss of syndecan-2 expression caused increased HSC cell cycle entry, downregulation of Cdkn1c, and loss of HSC long-term repopulating capacity. Syndecan-2 is a novel marker of HSCs that regulates HSC repopulating capacity via control of HSC quiescence.

1.
Mayle
A
,
Luo
M
,
Jeong
M
,
Goodell
MA.
Flow cytometry analysis of murine hematopoietic stem cells
.
Cytometry A.
2013
;
83
(
1
):
27
-
37
.
2.
Laurenti
E
,
Göttgens
B.
From haematopoietic stem cells to complex differentiation landscapes
.
Nature.
2018
;
553
(
7689
):
418
-
426
.
3.
Spangrude
GJ
,
Heimfeld
S
,
Weissman
IL.
Purification and characterization of mouse hematopoietic stem cells
.
Science.
1988
;
241
(
4861
):
58
-
62
.
4.
Ikuta
K
,
Weissman
IL.
Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation
.
Proc Natl Acad Sci USA.
1992
;
89
(
4
):
1502
-
1506
.
5.
Osawa
M
,
Hanada
K
,
Hamada
H
,
Nakauchi
H.
Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell
.
Science.
1996
;
273
(
5272
):
242
-
245
.
6.
Adolfsson
J
,
Borge
OJ
,
Bryder
D
, et al
.
Upregulation of Flt3 expression within the bone marrow Lin(-)Sca1(+)c-kit(+) stem cell compartment is accompanied by loss of self-renewal capacity
.
Immunity.
2001
;
15
(
4
):
659
-
669
.
7.
Christensen
JL
,
Weissman
IL.
Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells
.
Proc Natl Acad Sci USA.
2001
;
98
(
25
):
14541
-
14546
.
8.
Balazs
AB
,
Fabian
AJ
,
Esmon
CT
,
Mulligan
RC.
Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow
.
Blood.
2006
;
107
(
6
):
2317
-
2321
.
9.
Rabe
JL
,
Hernandez
G
,
Chavez
JS
,
Mills
TS
,
Nerlov
C
,
Pietras
EM.
CD34 and EPCR coordinately enrich functional murine hematopoietic stem cells under normal and inflammatory conditions
.
Exp Hematol.
2020
;
81
:
1
-
15.e6
.
10.
Ooi
AG
,
Karsunky
H
,
Majeti
R
, et al
.
The adhesion molecule esam1 is a novel hematopoietic stem cell marker
.
Stem Cells.
2009
;
27
(
3
):
653
-
661
.
11.
Forsberg
EC
,
Prohaska
SS
,
Katzman
S
,
Heffner
GC
,
Stuart
JM
,
Weissman
IL.
Differential expression of novel potential regulators in hematopoietic stem cells
.
PLoS Genet.
2005
;
1
(
3
):
e28
.
12.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
,
Yilmaz
OH
,
Terhorst
C
,
Morrison
SJ.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell.
2005
;
121
(
7
):
1109
-
1121
.
13.
Kiel
MJ
,
Yilmaz
OH
,
Morrison
SJ.
CD150-cells are transiently reconstituting multipotent progenitors with little or no stem cell activity
.
Blood.
2008
;
111
(
8
):
4413
-
4414
.
14.
Kim
I
,
He
S
,
Yilmaz
OH
,
Kiel
MJ
,
Morrison
SJ.
Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors
.
Blood.
2006
;
108
(
2
):
737
-
744
.
15.
Oguro
H
,
Ding
L
,
Morrison
SJ.
SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors
.
Cell Stem Cell.
2013
;
13
(
1
):
102
-
116
.
16.
Yilmaz
OH
,
Kiel
MJ
,
Morrison
SJ.
SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity
.
Blood.
2006
;
107
(
3
):
924
-
930
.
17.
Forsberg
EC
,
Passegué
E
,
Prohaska
SS
, et al
.
Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells
.
PLoS One.
2010
;
5
(
1
):
e8785
.
18.
Afratis
NA
,
Nikitovic
D
,
Multhaupt
HA
,
Theocharis
AD
,
Couchman
JR
,
Karamanos
NK.
Syndecans – key regulators of cell signaling and biological functions
.
FEBS J.
2017
;
284
(
1
):
27
-
41
.
19.
Sarrazin
S
,
Lamanna
WC
,
Esko
JD.
Heparan sulfate proteoglycans
.
Cold Spring Harb Perspect Biol.
2011
;
3
(
7
):
a004952
.
20.
Cheung
TH
,
Quach
NL
,
Charville
GW
, et al
.
Maintenance of muscle stem-cell quiescence by microRNA-489
.
Nature.
2012
;
482
(
7386
):
524
-
528
.
21.
Gilbert
PM
,
Havenstrite
KL
,
Magnusson
KE
, et al
.
Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture
.
Science.
2010
;
329
(
5995
):
1078
-
1081
.
22.
Pisconti
A
,
Cornelison
DD
,
Olguín
HC
,
Antwine
TL
,
Olwin
BB.
Syndecan-3 and Notch cooperate in regulating adult myogenesis
.
J Cell Biol.
2010
;
190
(
3
):
427
-
441
.
23.
Tanaka
KK
,
Hall
JK
,
Troy
AA
,
Cornelison
DD
,
Majka
SM
,
Olwin
BB.
Syndecan-4-expressing muscle progenitor cells in the SP engraft as satellite cells during muscle regeneration
.
Cell Stem Cell.
2009
;
4
(
3
):
217
-
225
.
24.
Morizur
L
,
Chicheportiche
A
,
Gauthier
LR
,
Daynac
M
,
Boussin
FD
,
Mouthon
MA.
Distinct molecular signatures of quiescent and activated adult neural stem cells reveal specific interactions with their microenvironment
.
Stem Cell Reports.
2018
;
11
(
2
):
565
-
577
.
25.
Oikari
LE
,
Okolicsanyi
RK
,
Qin
A
,
Yu
C
,
Griffiths
LR
,
Haupt
LM.
Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination
.
Stem Cell Res (Amst).
2016
;
16
(
1
):
92
-
104
.
26.
Saez
B
,
Ferraro
F
,
Yusuf
RZ
, et al
.
Inhibiting stromal cell heparan sulfate synthesis improves stem cell mobilization and enables engraftment without cytotoxic conditioning
.
Blood.
2014
;
124
(
19
):
2937
-
2947
.
27.
Di Giacomo
F
,
Lewandowski
D
,
Cabannes
E
, et al
.
Heparan sulfate mimetics can efficiently mobilize long-term hematopoietic stem cells
.
Haematologica.
2012
;
97
(
4
):
491
-
499
.
28.
Szade
K
,
Gulati
GS
,
Chan
CKF
, et al
.
Where hematopoietic stem cells live: the bone marrow niche
.
Antioxid Redox Signal.
2018
;
29
(
2
):
191
-
204
.
29.
Acar
M
,
Kocherlakota
KS
,
Murphy
MM
, et al
.
Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal
.
Nature.
2015
;
526
(
7571
):
126
-
130
.
30.
Challen
GA
,
Boles
N
,
Lin
KK
,
Goodell
MA.
Mouse hematopoietic stem cell identification and analysis
.
Cytometry A.
2009
;
75
(
1
):
14
-
24
.
31.
Smith
LG
,
Weissman
IL
,
Heimfeld
S.
Clonal analysis of hematopoietic stem-cell differentiation in vivo
.
Proc Natl Acad Sci USA.
1991
;
88
(
7
):
2788
-
2792
.
32.
Morita
Y
,
Ema
H
,
Nakauchi
H.
Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment
.
J Exp Med.
2010
;
207
(
6
):
1173
-
1182
.
33.
Staber
PB
,
Zhang
P
,
Ye
M
, et al
.
Sustained PU.1 levels balance cell-cycle regulators to prevent exhaustion of adult hematopoietic stem cells
.
Mol Cell.
2013
;
49
(
5
):
934
-
946
.
34.
Park
H
,
Kim
Y
,
Lim
Y
,
Han
I
,
Oh
ES.
Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells
.
J Biol Chem.
2002
;
277
(
33
):
29730
-
29736
.
35.
Péterfia
B
,
Füle
T
,
Baghy
K
, et al
.
Syndecan-1 enhances proliferation, migration and metastasis of HT-1080 cells in cooperation with Syndecan-2
.
PLoS One.
2012
;
7
(
6
):
e39474
.
36.
Matsumoto
A
,
Takeishi
S
,
Kanie
T
, et al
.
p57 is required for quiescence and maintenance of adult hematopoietic stem cells
.
Cell Stem Cell.
2011
;
9
(
3
):
262
-
271
.
37.
Zou
P
,
Yoshihara
H
,
Hosokawa
K
, et al
.
p57(Kip2) and p27(Kip1) cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70
.
Cell Stem Cell.
2011
;
9
(
3
):
247
-
261
.
38.
Yamashita
M
,
Passegué
E.
TNF-α coordinates hematopoietic stem cell survival and myeloid regeneration
.
Cell Stem Cell.
2019
;
25
(
3
):
357
-
372.e7
.
39.
Billing
M
,
Rörby
E
,
May
G
, et al
.
A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation of mouse hematopoietic progenitor cells
.
Exp Hematol.
2016
;
44
(
5
):
399
-
409.e5
.
40.
Jinnin
M
,
Ihn
H
,
Tamaki
K.
Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression
.
Mol Pharmacol.
2006
;
69
(
2
):
597
-
607
.
41.
Scandura
JM
,
Boccuni
P
,
Massagué
J
,
Nimer
SD.
Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation [published correction appears in Proc Natl Acad Sci U S A. 2004;101(47):16707]
.
Proc Natl Acad Sci USA.
2004
;
101
(
42
):
15231
-
15236
.
42.
Magnusson
M
,
Brun
ACM
,
Miyake
N
, et al
.
HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development
.
Blood.
2007
;
109
(
9
):
3687
-
3696
.
43.
Antonchuk
J
,
Sauvageau
G
,
Humphries
RK.
HOXB4-induced expansion of adult hematopoietic stem cells ex vivo
.
Cell.
2002
;
109
(
1
):
39
-
45
.
44.
Arinobu
Y
,
Mizuno
S
,
Chong
Y
, et al
.
Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages
.
Cell Stem Cell.
2007
;
1
(
4
):
416
-
427
.
45.
Ku
CJ
,
Hosoya
T
,
Maillard
I
,
Engel
JD.
GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry
.
Blood.
2012
;
119
(
10
):
2242
-
2251
.
46.
Arai
F
,
Hirao
A
,
Ohmura
M
, et al
.
Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche
.
Cell.
2004
;
118
(
2
):
149
-
161
.
47.
Chen
JY
,
Miyanishi
M
,
Wang
SK
, et al
.
Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche
.
Nature.
2016
;
530
(
7589
):
223
-
227
.
48.
Gazit
R
,
Mandal
PK
,
Ebina
W
, et al
.
Fgd5 identifies hematopoietic stem cells in the murine bone marrow
.
J Exp Med.
2014
;
211
(
7
):
1315
-
1331
.
49.
Akiyama
T
,
Kamimura
K
,
Firkus
C
,
Takeo
S
,
Shimmi
O
,
Nakato
H.
Dally regulates Dpp morphogen gradient formation by stabilizing Dpp on the cell surface
.
Dev Biol.
2008
;
313
(
1
):
408
-
419
.
50.
Junion
G
,
Bataillé
L
,
Jagla
T
,
Da Ponte
JP
,
Tapin
R
,
Jagla
K.
Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors
.
Genes Dev.
2007
;
21
(
23
):
3163
-
3180
.
51.
Kwan
KY
,
Sestan
N
,
Anton
ES.
Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex
.
Development.
2012
;
139
(
9
):
1535
-
1546
.
52.
Shimozono
S
,
Iimura
T
,
Kitaguchi
T
,
Higashijima
S
,
Miyawaki
A.
Visualization of an endogenous retinoic acid gradient across embryonic development
.
Nature.
2013
;
496
(
7445
):
363
-
366
.
53.
Gupta
P
,
McCarthy
JB
,
Verfaillie
CM.
Stromal fibroblast heparan sulfate is required for cytokine-mediated ex vivo maintenance of human long-term culture-initiating cells
.
Blood.
1996
;
87
(
8
):
3229
-
3236
.
54.
Gupta
P
,
Oegema
TR
Jr
,
Brazil
JJ
,
Dudek
AZ
,
Slungaard
A
,
Verfaillie
CM.
Structurally specific heparan sulfates support primitive human hematopoiesis by formation of a multimolecular stem cell niche
.
Blood.
1998
;
92
(
12
):
4641
-
4651
.
55.
Gupta
P
,
Oegema
TR
Jr
,
Brazil
JJ
,
Dudek
AZ
,
Slungaard
A
,
Verfaillie
CM.
Human LTC-IC can be maintained for at least 5 weeks in vitro when interleukin-3 and a single chemokine are combined with O-sulfated heparan sulfates: requirement for optimal binding interactions of heparan sulfate with early-acting cytokines and matrix proteins
.
Blood.
2000
;
95
(
1
):
147
-
155
.
56.
Wilson
A
,
Laurenti
E
,
Oser
G
, et al
.
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
.
Cell.
2008
;
135
(
6
):
1118
-
1129
.
57.
Benveniste
P
,
Frelin
C
,
Janmohamed
S
, et al
.
Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential
.
Cell Stem Cell.
2010
;
6
(
1
):
48
-
58
.
58.
Praetor
A
,
McBride
JM
,
Chiu
H
, et al
.
Genetic deletion of JAM-C reveals a role in myeloid progenitor generation
.
Blood.
2009
;
113
(
9
):
1919
-
1928
.
59.
Gopal
S
,
Arokiasamy
S
,
Pataki
C
,
Whiteford
JR
,
Couchman
JR.
Syndecan receptors: pericellular regulators in development and inflammatory disease
.
Open Biol.
2021
;
11
(
2
):
200377
.
60.
Coles
CH
,
Shen
Y
,
Tenney
AP
, et al
.
Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension
.
Science.
2011
;
332
(
6028
):
484
-
488
.
61.
Doody
KM
,
Stanford
SM
,
Sacchetti
C
, et al
.
Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy
.
Sci Transl Med.
2015
;
7
(
288
):
288ra76
.
62.
Chen
L
,
Klass
C
,
Woods
A.
Syndecan-2 regulates transforming growth factor-beta signaling
.
J Biol Chem.
2004
;
279
(
16
):
15715
-
15718
.
63.
Shi
Y
,
Gochuico
BR
,
Yu
G
, et al
.
Syndecan-2 exerts antifibrotic effects by promoting caveolin-1-mediated transforming growth factor-β receptor I internalization and inhibiting transforming growth factor-β1 signaling
.
Am J Respir Crit Care Med.
2013
;
188
(
7
):
831
-
841
.
64.
Nishimori
S
,
Tanaka
Y
,
Chiba
T
, et al
.
Smad-mediated transcription is required for transforming growth factor-beta 1-induced p57(Kip2) proteolysis in osteoblastic cells
.
J Biol Chem.
2001
;
276
(
14
):
10700
-
10705
.
65.
Mytilinaiou
M
,
Bano
A
,
Nikitovic
D
, et al
.
Syndecan-2 is a key regulator of transforming growth factor beta 2/Smad2-mediated adhesion in fibrosarcoma cells
.
IUBMB Life.
2013
;
65
(
2
):
134
-
143
.
You do not currently have access to this content.

Sign in via your Institution

Sign In