Cholesterol is a vital lipid for cellular functions. It is necessary for membrane biogenesis, cell proliferation, and differentiation. In addition to maintaining cell integrity and permeability, increasing evidence indicates a strict link between cholesterol homeostasis, inflammation, and hematological tumors. This makes cholesterol homeostasis an optimal therapeutic target for hematopoietic malignancies. Manipulating cholesterol homeostasis by either interfering with its synthesis or activating the reverse cholesterol transport via the engagement of liver X receptors affects the integrity of tumor cells both in vitro and in vivo. Cholesterol homeostasis has also been manipulated to restore antitumor immune responses in preclinical models. These observations have prompted clinical trials involving acute myeloid leukemia to test the combination of chemotherapy with drugs interfering with cholesterol synthesis (ie, statins). We review the role of cholesterol homeostasis in hematopoietic malignancies as well as in cells of the tumor microenvironment and discuss the potential use of lipid modulators for therapeutic purposes.

1.
Brown
MS
,
Goldstein
JL.
The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
.
Cell.
1997
;
89
(
3
):
331
-
340
.
2.
Janowski
BA
,
Willy
PJ
,
Devi
TR
,
Falck
JR
,
Mangelsdorf
DJ.
An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha
.
Nature.
1996
;
383
(
6602
):
728
-
731
.
3.
Janowski
BA
,
Grogan
MJ
,
Jones
SA
, et al
.
Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ
.
Proc Natl Acad Sci USA.
1999
;
96
(
1
):
266
-
271
.
4.
Brown
MS
,
Goldstein
JL.
Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL
.
J Lipid Res.
2009
;
50
(
suppl
):
S15
-
S27
.
5.
Goldstein
JL
,
DeBose-Boyd
RA
,
Brown
MS.
Protein sensors for membrane sterols
.
Cell.
2006
;
124
(
1
):
35
-
46
.
6.
Goldstein
JL
,
Brown
MS.
A century of cholesterol and coronaries: from plaques to genes to statins
.
Cell.
2015
;
161
(
1
):
161
-
172
.
7.
Peet
DJ
,
Janowski
BA
,
Mangelsdorf
DJ.
The LXRs: a new class of oxysterol receptors
.
Curr Opin Genet Dev.
1998
;
8
(
5
):
571
-
575
.
8.
Hong
C
,
Tontonoz
P.
Liver X receptors in lipid metabolism: opportunities for drug discovery
.
Nat Rev Drug Discov.
2014
;
13
(
6
):
433
-
444
.
9.
Luo
J
,
Yang
H
,
Song
BL.
Mechanisms and regulation of cholesterol homeostasis
.
Nat Rev Mol Cell Biol.
2020
;
21
(
4
):
225
-
245
.
10.
Bovenga
F
,
Sabbà
C
,
Moschetta
A.
Uncoupling nuclear receptor LXR and cholesterol metabolism in cancer
.
Cell Metab.
2015
;
21
(
4
):
517
-
526
.
11.
Brown
MS
,
Radhakrishnan
A
,
Goldstein
JL.
Retrospective on cholesterol homeostasis: the central role of Scap
.
Annu Rev Biochem.
2018
;
87
(
1
):
783
-
807
.
12.
Yang
T
,
Espenshade
PJ
,
Wright
ME
, et al
.
Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
.
Cell.
2002
;
110
(
4
):
489
-
500
.
13.
Radhakrishnan
A
,
Ikeda
Y
,
Kwon
HJ
,
Brown
MS
,
Goldstein
JL.
Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig
.
Proc Natl Acad Sci USA.
2007
;
104
(
16
):
6511
-
6518
.
14.
Spann
NJ
,
Garmire
LX
,
McDonald
JG
, et al
.
Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses
.
Cell.
2012
;
151
(
1
):
138
-
152
.
15.
Kalaany
NY
,
Mangelsdorf
DJ.
LXRS and FXR: the yin and yang of cholesterol and fat metabolism
.
Annu Rev Physiol.
2006
;
68
(
1
):
159
-
191
.
16.
Björkhem
I.
Do oxysterols control cholesterol homeostasis?
J Clin Invest.
2002
;
110
(
6
):
725
-
730
.
17.
Murphy
RC
,
Johnson
KM.
Cholesterol, reactive oxygen species, and the formation of biologically active mediators
.
J Biol Chem.
2008
;
283
(
23
):
15521
-
15525
.
18.
Chen
W
,
Chen
G
,
Head
DL
,
Mangelsdorf
DJ
,
Russell
DW.
Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice
.
Cell Metab.
2007
;
5
(
1
):
73
-
79
.
19.
Fuda
H
,
Javitt
NB
,
Mitamura
K
,
Ikegawa
S
,
Strott
CA.
Oxysterols are substrates for cholesterol sulfotransferase
.
J Lipid Res.
2007
;
48
(
6
):
1343
-
1352
.
20.
Zelcer
N
,
Hong
C
,
Boyadjian
R
,
Tontonoz
P.
LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor
.
Science.
2009
;
325
(
5936
):
100
-
104
.
21.
Fessler
MB.
The intracellular cholesterol landscape: dynamic integrator of the immune response
.
Trends Immunol.
2016
;
37
(
12
):
819
-
830
.
22.
Cook
IT
,
Duniec-Dmuchowski
Z
,
Kocarek
TA
,
Runge-Morris
M
,
Falany
CN.
24-hydroxycholesterol sulfation by human cytosolic sulfotransferases: formation of monosulfates and disulfates, molecular modeling, sulfatase sensitivity, and inhibition of liver x receptor activation
.
Drug Metab Dispos.
2009
;
37
(
10
):
2069
-
2078
.
23.
Vitols
S
,
Norgren
S
,
Juliusson
G
,
Tatidis
L
,
Luthman
H.
Multilevel regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression in normal and leukemic cells
.
Blood.
1994
;
84
(
8
):
2689
-
2698
.
24.
Stirewalt
DL
,
Appelbaum
FR
,
Willman
CL
,
Zager
RA
,
Banker
DE.
Mevastatin can increase toxicity in primary AMLs exposed to standard therapeutic agents, but statin efficacy is not simply associated with ras hotspot mutations or overexpression
.
Leuk Res.
2003
;
27
(
2
):
133
-
145
.
25.
Dimitroulakos
J
,
Nohynek
D
,
Backway
KL
, et al
.
Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach
.
Blood.
1999
;
93
(
4
):
1308
-
1318
.
26.
Li
HY
,
Appelbaum
FR
,
Willman
CL
,
Zager
RA
,
Banker
DE.
Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses
.
Blood.
2003
;
101
(
9
):
3628
-
3634
.
27.
Banker
DE
,
Mayer
SJ
,
Li
HY
,
Willman
CL
,
Appelbaum
FR
,
Zager
RA.
Cholesterol synthesis and import contribute to protective cholesterol increments in acute myeloid leukemia cells
.
Blood.
2004
;
104
(
6
):
1816
-
1824
.
28.
Bergstrom
JD
,
Kurtz
MM
,
Rew
DJ
, et al
.
Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase
.
Proc Natl Acad Sci USA.
1993
;
90
(
1
):
80
-
84
.
29.
Pandyra
A
,
Mullen
PJ
,
Kalkat
M
, et al
.
Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop
.
Cancer Res.
2014
;
74
(
17
):
4772
-
4782
.
30.
Mullen
PJ
,
Yu
R
,
Longo
J
,
Archer
MC
,
Penn
LZ.
The interplay between cell signalling and the mevalonate pathway in cancer
.
Nat Rev Cancer.
2016
;
16
(
11
):
718
-
731
.
31.
Van Besien
H
,
Sassano
A
,
Altman
JK
,
Platanias
LC.
Antileukemic properties of 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors
.
Leuk Lymphoma.
2013
;
54
(
12
):
2601
-
2605
.
32.
Xia
Z
,
Tan
MM
,
Wong
WW
,
Dimitroulakos
J
,
Minden
MD
,
Penn
LZ.
Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells
.
Leukemia.
2001
;
15
(
9
):
1398
-
1407
.
33.
Gimenez
N
,
Tripathi
R
,
Giró
A
, et al
.
Systems biology drug screening identifies statins as enhancers of current therapies in chronic lymphocytic leukemia
.
Sci Rep.
2020
;
10
(
1
):
22153
.
34.
Lee
JS
,
Roberts
A
,
Juarez
D
, et al
.
Statins enhance efficacy of venetoclax in blood cancers
.
Sci Transl Med.
2018
;
10
(
445
):1-10
eaaq1240
. d
35.
Kornblau
SM
,
Banker
DE
,
Stirewalt
D
, et al
.
Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study
.
Blood.
2007
;
109
(
7
):
2999
-
3006
.
36.
Advani
AS
,
Li
H
,
Michaelis
LC
, et al
.
Report of the relapsed/refractory cohort of SWOG S0919: a phase 2 study of idarubicin and cytarabine in combination with pravastatin for acute myelogenous leukemia (AML)
.
Leuk Res.
2018
;
67
:
17
-
20
.
37.
Chen
F
,
Wu
X
,
Niculite
C
, et al
.
Classic and targeted anti-leukaemic agents interfere with the cholesterol biogenesis metagene in acute myeloid leukaemia: therapeutic implications
.
J Cell Mol Med.
2020
;
24
(
13
):
7378
-
7392
.
38.
Hartwell
KA
,
Miller
PG
,
Mukherjee
S
, et al
.
Niche-based screening identifies small-molecule inhibitors of leukemia stem cells
.
Nat Chem Biol.
2013
;
9
(
12
):
840
-
848
.
39.
De Jonge-Peeters
SD
,
van der Weide
K
,
Kuipers
F
,
Sluiter
WJ
,
de Vries
EG
,
Vellenga
E.
Variability in responsiveness to lovastatin of the primitive CD34+ AML subfraction compared to normal CD34+ cells
.
Ann Hematol.
2009
;
88
(
6
):
573
-
580
.
40.
Geyeregger
R
,
Shehata
M
,
Zeyda
M
, et al
.
Liver X receptors interfere with cytokine-induced proliferation and cell survival in normal and leukemic lymphocytes
.
J Leukoc Biol.
2009
;
86
(
5
):
1039
-
1048
.
41.
Ceroi
A
,
Masson
D
,
Roggy
A
, et al
.
LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis
.
Blood.
2016
;
128
(
23
):
2694
-
2707
.
42.
Vilimanovich
U
,
Bosnjak
M
,
Bogdanovic
A
, et al
.
Statin-mediated inhibition of cholesterol synthesis induces cytoprotective autophagy in human leukemic cells
.
Eur J Pharmacol.
2015
;
765
:
415
-
428
.
43.
Segala
G
,
David
M
,
de Medina
P
, et al
.
Dendrogenin A drives LXR to trigger lethal autophagy in cancers
.
Nat Commun.
2017
;
8
(
1
):
1903
.
44.
Silvente-Poirot
S
,
Segala
G
,
Poirot
MC
,
Poirot
M.
Ligand-dependent transcriptional induction of lethal autophagy: a new perspective for cancer treatment
.
Autophagy.
2018
;
14
(
3
):
555
-
557
.
45.
Mouchel
PL
,
Serhan
N
,
Betous
R
, et al
.
Dendrogenin A enhances anti-leukemic effect of anthracycline in acute myeloid leukemia
.
Cancers (Basel).
2020
;
12
(
10
):
E2933
.
46.
Bandyopadhyay
S
,
Li
J
,
Traer
E
, et al
.
Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia
.
PloS One.
2017
;
12
(
7
):
e0179558
.
47.
Yang
S
,
Damiano
MG
,
Zhang
H
, et al
.
Biomimetic, synthetic HDL nanostructures for lymphoma
.
Proc Natl Acad Sci USA.
2013
;
110
(
7
):
2511
-
2516
.
48.
Chen
L
,
Monti
S
,
Juszczynski
P
, et al
.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas
.
Cancer Cell.
2013
;
23
(
6
):
826
-
838
.
49.
Rink
JS
,
Yang
S
,
Cen
O
, et al
.
Rational targeting of cellular cholesterol in diffuse large B-cell lymphoma (DLBCL) enabled by functional lipoprotein nanoparticles: a therapeutic strategy dependent on cell of origin
.
Mol Pharm.
2017
;
14
(
11
):
4042
-
4051
.
50.
Song
MK
,
Chung
JS
,
Lee
GW
, et al
.
Statin use has negative clinical impact on non-germinal center in patients with diffuse large B cell lymphoma in rituximab era
.
Leuk Res.
2015
;
39
(
2
):
211
-
215
.
51.
Winiarska
M
,
Bil
J
,
Wilczek
E
, et al
.
Statins impair antitumor effects of rituximab by inducing conformational changes of CD20
.
PloS Med.
2008
;
5
(
3
):
e64
.
52.
Zelcer
N
,
Tontonoz
P.
Liver X receptors as integrators of metabolic and inflammatory signaling
.
J Clin Invest.
2006
;
116
(
3
):
607
-
614
.
53.
Bensinger
SJ
,
Tontonoz
P.
Integration of metabolism and inflammation by lipid-activated nuclear receptors
.
Nature.
2008
;
454
(
7203
):
470
-
477
.
54.
Dang
EV
,
Cyster
JG.
Loss of sterol metabolic homeostasis triggers inflammasomes: how and why
.
Curr Opin Immunol.
2019
;
56
:
1
-
9
.
55.
Cyster
JG
,
Dang
EV
,
Reboldi
A
,
Yi
T.
25-Hydroxycholesterols in innate and adaptive immunity
.
Nat Rev Immunol.
2014
;
14
(
11
):
731
-
743
.
56.
Spann
NJ
,
Glass
CK.
Sterols and oxysterols in immune cell function
.
Nat Immunol.
2013
;
14
(
9
):
893
-
900
.
57.
Dang
EV
,
McDonald
JG
,
Russell
DW
,
Cyster
JG.
Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation
.
Cell.
2017
;
171
(
5
):
1057
-
1071.e11
.
58.
Westerterp
M
,
Gautier
EL
,
Ganda
A
, et al
.
Cholesterol accumulation in dendritic cells links the inflammasome to acquired immunity
.
Cell Metab.
2017
;
25
(
6
):
1294
-
1304.e6
.
59.
Ito
A
,
Hong
C
,
Oka
K
, et al
.
Cholesterol accumulation in CD11c+ immune cells is a causal and targetable factor in autoimmune disease
.
Immunity.
2016
;
45
(
6
):
1311
-
1326
.
60.
A-Gonzalez
N
,
Bensinger
SJ
,
Hong
C
, et al
.
Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR
.
Immunity.
2009
;
31
(
2
):
245
-
258
.
61.
Guo
C
,
Chi
Z
,
Jiang
D
, et al
.
Cholesterol homeostatic regulator SCAP-SREBP2 integrates NLRP3 inflammasome activation and cholesterol biosynthetic signaling in macrophages
.
Immunity.
2018
;
49
(
5
):
842
-
856.e7
.
62.
Kusnadi
A
,
Park
SH
,
Yuan
R
, et al
.
The cytokine TNF promotes transcription factor SREBP activity and binding to inflammatory genes to activate macrophages and limit tissue repair
.
Immunity.
2019
;
51
(
2
):
241
-
257.e9
.
63.
Park
YH
,
Wood
G
,
Kastner
DL
,
Chae
JJ.
Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS
.
Nat Immunol.
2016
;
17
(
8
):
914
-
921
.
64.
Akula
MK
,
Shi
M
,
Jiang
Z
, et al
.
Control of the innate immune response by the mevalonate pathway
.
Nat Immunol.
2016
;
17
(
8
):
922
-
929
.
65.
Xia
Y
,
Xie
Y
,
Yu
Z
, et al
.
The mevalonate pathway is a druggable target for vaccine adjuvant discovery
.
Cell.
2018
;
175
(
4
):
1059
-
1073.e21
.
66.
Joseph
SB
,
Castrillo
A
,
Laffitte
BA
,
Mangelsdorf
DJ
,
Tontonoz
P.
Reciprocal regulation of inflammation and lipid metabolism by liver X receptors
.
Nat Med.
2003
;
9
(
2
):
213
-
219
.
67.
Glass
CK
,
Ogawa
S.
Combinatorial roles of nuclear receptors in inflammation and immunity
.
Nat Rev Immunol.
2006
;
6
(
1
):
44
-
55
.
68.
Glass
CK
,
Saijo
K.
Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells
.
Nat Rev Immunol.
2010
;
10
(
5
):
365
-
376
.
69.
Ito
A
,
Hong
C
,
Rong
X
, et al
.
LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling
.
eLife.
2015
;
4
:
e08009
.
70.
Li
P
,
Spann
NJ
,
Kaikkonen
MU
, et al
.
NcoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids
.
Cell.
2013
;
155
(
1
):
200
-
214
.
71.
Oishi
Y
,
Spann
NJ
,
Link
VM
, et al
.
SREBP1 contributes to resolution of pro-inflammatory TLR4 signaling by reprogramming fatty acid metabolism
.
Cell Metab.
2017
;
25
(
2
):
412
-
427
.
72.
Thomas
DG
,
Doran
AC
,
Fotakis
P
, et al
.
LXR suppresses inflammatory gene expression and neutrophil migration through cis-repression and cholesterol efflux
.
Cell Rep.
2018
;
25
(
13
):
3774
-
3785.e4
.
73.
Rong
X
,
Albert
CJ
,
Hong
C
, et al
.
LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition
.
Cell Metab.
2013
;
18
(
5
):
685
-
697
.
74.
Serhan
CN
,
Chiang
N
,
Dalli
J
,
Levy
BD.
Lipid mediators in the resolution of inflammation
.
Cold Spring Harb Perspect Biol.
2014
;
7
(
2
):
a016311
.
75.
Bensinger
SJ
,
Bradley
MN
,
Joseph
SB
, et al
.
LXR signaling couples sterol metabolism to proliferation in the acquired immune response
.
Cell.
2008
;
134
(
1
):
97
-
111
.
76.
Traversari
C
,
Sozzani
S
,
Steffensen
KR
,
Russo
V.
LXR-dependent and -independent effects of oxysterols on immunity and tumor growth
.
Eur J Immunol.
2014
;
44
(
7
):
1896
-
1903
.
77.
Huang
B
,
Song
BL
,
Xu
C.
Cholesterol metabolism in cancer: mechanisms and therapeutic opportunities
.
Nat Metab.
2020
;
2
(
2
):
132
-
141
.
78.
Villablanca
EJ
,
Raccosta
L
,
Zhou
D
, et al
.
Tumor-mediated liver X receptor-alpha activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses
.
Nat Med.
2010
;
16
(
1
):
98
-
105
.
79.
Lanterna
C
,
Musumeci
A
,
Raccosta
L
, et al
.
The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice
.
Cancer Immunol Immunother.
2016
;
65
(
11
):
1303
-
1315
.
80.
Flaveny
CA
,
Griffett
K
,
El-Gendy
B-D
, et al
.
Broad anti-tumor activity of a small molecule that selectively targets the Warburg effect and lipogenesis
.
Cancer Cell.
2015
;
28
(
1
):
42
-
56
.
81.
Carpenter
KJ
,
Valfort
AC
,
Steinauer
N
, et al
.
LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer
.
Sci Rep.
2019
;
9
(
1
):
19530
.
82.
Raccosta
L
,
Fontana
R
,
Maggioni
D
, et al
.
The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils
.
J Exp Med.
2013
;
210
(
9
):
1711
-
1728
.
83.
Hannedouche
S
,
Zhang
J
,
Yi
T
, et al
.
Oxysterols direct immune cell migration via EBI2
.
Nature.
2011
;
475
(
7357
):
524
-
527
.
84.
Liu
C
,
Yang
XV
,
Wu
J
, et al
.
Oxysterols direct B-cell migration through EBI2
.
Nature.
2011
;
475
(
7357
):
519
-
523
.
85.
Niss Arfelt
K
,
Barington
L
,
Benned-Jensen
T
, et al
.
EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies
.
Blood.
2017
;
129
(
7
):
866
-
878
.
86.
Repa
JJ
,
Mangelsdorf
DJ.
The role of orphan nuclear receptors in the regulation of cholesterol homeostasis
.
Annu Rev Cell Dev Biol.
2000
;
16
(
1
):
459
-
481
.
87.
Tavazoie
MF
,
Pollack
I
,
Tanqueco
R
, et al
.
LXR/ApoE activation restricts innate immune suppression in cancer
.
Cell.
2018
;
172
(
4
):
825
-
840.e18
.
88.
Pencheva
N
,
Buss
CG
,
Posada
J
,
Merghoub
T
,
Tavazoie
SF.
Broad-spectrum therapeutic suppression of metastatic melanoma through nuclear hormone receptor activation
.
Cell.
2014
;
156
(
5
):
986
-
1001
.
89.
Marinozzi
M
,
Castro Navas
FF
,
Maggioni
D
, et al
.
Side-chain modified ergosterol and stigmasterol derivatives as liver X receptor agonists
.
J Med Chem.
2017
;
60
(
15
):
6548
-
6562
.
90.
Lin
CY
,
Gustafsson
JA.
Targeting liver X receptors in cancer therapeutics
.
Nat Rev Cancer.
2015
;
15
(
4
):
216
-
224
.
91.
Bilotta
MT
,
Abruzzese
MP
,
Molfetta
R
, et al
.
Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms
.
FASEB J.
2019
;
33
(
8
):
9489
-
9504
.
92.
De Medina
P
,
Paillasse
MR
,
Segala
G
, et al
.
Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties
.
Nat Commun.
2013
;
4
(
1
):
1840
.
93.
Khan
OM
,
Ibrahim
MX
,
Jonsson
IM
, et al
.
Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice
.
J Clin Invest.
2011
;
121
(
2
):
628
-
639
.
94.
Akula
MK
,
Ibrahim
MX
,
Ivarsson
EG
, et al
.
Protein prenylation restrains innate immunity by inhibiting Rac1 effector interactions
.
Nat Commun.
2019
;
10
(
1
):
3975
.
95.
York
AG
,
Williams
KJ
,
Argus
JP
, et al
.
Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling
.
Cell.
2015
;
163
(
7
):
1716
-
1729
.
96.
Yang
W
,
Bai
Y
,
Xiong
Y
, et al
.
Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism
.
Nature.
2016
;
531
(
7596
):
651
-
655
.
97.
Zhao
L
,
Li
J
,
Liu
Y
, et al
.
Cholesterol esterification enzyme inhibition enhances antitumor effects of human chimeric antigen receptors modified T cells
.
J Immunother.
2018
;
41
(
2
):
45
-
52
.
98.
Sanchez
PV
,
Glantz
ST
,
Scotland
S
,
Kasner
MT
,
Carroll
M.
Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors
.
Leukemia.
2014
;
28
(
4
):
749
-
760
.
99.
Abdullah
MI
,
de Wolf
E
,
Jawad
MJ
,
Richardson
A.
The poor design of clinical trials of statins in oncology may explain their failure: lessons for drug repurposing
.
Cancer Treat Rev.
2018
;
69
:
84
-
89
.
100.
Juarez
D
,
Fruman
DA.
Targeting the mevalonate pathway in cancer
.
Trends Cancer.
2021
;
7
(
6
):
525
-
540
.
101.
Katz
MS.
Therapy insight: potential of statins for cancer chemoprevention and therapy
.
Nat Clin Pract Oncol.
2005
;
2
(
2
):
82
-
89
.
You do not currently have access to this content.

Sign in via your Institution

Sign In