• LDHA regulates protein synthesis during MK maturation and proplatelet formation by directly binding to eEF2 in an NADH-dependent manner.

  • Targeting LDHA with stiripentol significantly promotes the production of platelets in the immune thrombocytopenia model.

Translation is essential for megakaryocyte (MK) maturation and platelet production. However, how the translational pathways are regulated in this process remains unknown. In this study, we found that MK/platelet–specific lactate dehydrogenase A (LdhA) knockout mice exhibited an increased number of platelets with remarkably accelerated MK maturation and proplatelet formation. Interestingly, the role of LDHA in MK maturation and platelet formation did not depend on lactate content, which was the major product of LDHA. Mechanism studies revealed that LDHA interacted with eukaryotic elongation factor 2 (eEF2) in the cytoplasm, controlling the participation of eEF2 in translation at the ribosome. Furthermore, the interaction of LDHA and eEF2 was dependent on nicotinamide adenine dinucleotide (NADH), a coenzyme of LDHA. NADH-competitive inhibitors of LDHA could release eEF2 from the LDHA pool, upregulate translation, and enhance MK maturation in vitro. Among LDHA inhibitors, stiripentol significantly promoted the production of platelets in vivo under a physiological state and in the immune thrombocytopenia model. Moreover, stiripentol could promote platelet production from human cord blood mononuclear cell–derived MKs and also have a superposed effect with romiplostim. In short, this study shows a novel nonclassical function of LDHA in translation that may serve as a potential target for thrombocytopenia therapy.

1.
Krishnegowda
M
,
Rajashekaraiah
V
.
Platelet disorders: an overview
.
Blood Coagul Fibrinolysis.
2015
;
26
(
5
):
479
-
491
.
2.
van der Meijden
PEJ
,
Heemskerk
JWM
.
Platelet biology and functions: new concepts and clinical perspectives
.
Nat Rev Cardiol.
2019
;
16
(
3
):
166
-
179
.
3.
Patel
SR
,
Hartwig
JH
,
Italiano
JE
Jr
.
The biogenesis of platelets from megakaryocyte proplatelets
.
J Clin Invest.
2005
;
115
(
12
):
3348
-
3354
.
4.
Machlus
KR
,
Italiano
JE
Jr
.
The incredible journey: from megakaryocyte development to platelet formation
.
J Cell Biol.
2013
;
201
(
6
):
785
-
796
.
5.
Manne
BK
,
Bhatlekar
S
,
Middleton
EA
,
Weyrich
AS
,
Borst
O
,
Rondina
MT
.
Phospho-inositide-dependent kinase 1 regulates signal dependent translation in megakaryocytes and platelets
.
J Thromb Haemost.
2020
;
18
(
5
):
1183
-
1196
.
6.
Machlus
KR
,
Wu
SK
,
Stumpo
DJ
, et al
.
Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation
.
Blood.
2016
;
127
(
11
):
1468
-
1480
.
7.
Fidler
TP
,
Campbell
RA
,
Funari
T
, et al
.
Deletion of GLUT1 and GLUT3 reveals multiple roles for glucose metabolism in platelet and megakaryocyte function
[published corrections appear in Cell Rep. 2017;20(9):2277 and Cell Rep. 2017;21(6):1705]
Cell Rep.
2017
;
20
(
4
):
881
-
894
.
8.
Valvona
CJ
,
Fillmore
HL
,
Nunn
PB
,
Pilkington
GJ
.
The regulation and function of lactate dehydrogenase A: therapeutic potential in brain tumor
.
Brain Pathol.
2016
;
26
(
1
):
3
-
17
.
9.
Urbańska
K
,
Orzechowski
A
.
Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells
.
Int J Mol Sci.
2019
;
20
(
9
):
E2085
.
10.
Jiang
H
,
Yu
Z
,
Ding
N
, et al
.
The role of AGK in thrombocytopoiesis and possible therapeutic strategies
.
Blood.
2020
;
136
(
1
):
119
-
129
.
11.
Skarnes
WC
,
Rosen
B
,
West
AP
, et al
.
A conditional knockout resource for the genome-wide study of mouse gene function
.
Nature.
2011
;
474
(
7351
):
337
-
342
.
12.
Pan
Y
,
Zhang
L
,
Liu
Q
, et al
.
Insertion of a knockout-first cassette in Ampd1 gene leads to neonatal death by disruption of neighboring genes expression
.
Sci Rep.
2016
;
6
(
1
):
35970
.
13.
Tiedt
R
,
Schomber
T
,
Hao-Shen
H
,
Skoda
RC
.
Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo
.
Blood.
2007
;
109
(
4
):
1503
-
1506
.
14.
Yamamoto
R
,
Morita
Y
,
Ooehara
J
, et al
.
Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells
.
Cell.
2013
;
154
(
5
):
1112
-
1126
.
15.
Kaushansky
K
.
Thrombopoiesis
.
Semin Hematol.
2015
;
52
(
1
):
4
-
11
.
16.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature.
2017
;
544
(
7648
):
105
-
109
.
17.
Bush
LM
,
Healy
CP
,
Marvin
JE
,
Deans
TL
.
High-throughput enrichment and isolation of megakaryocyte progenitor cells from the mouse bone marrow
.
Sci Rep.
2021
;
11
(
1
):
8268
.
18.
Zhu
F
,
Feng
M
,
Sinha
R
,
Seita
J
,
Mori
Y
,
Weissman
IL
.
Screening for genes that regulate the differentiation of human megakaryocytic lineage cells
.
Proc Natl Acad Sci USA.
2018
;
115
(
40
):
E9308
-
E9316
.
19.
Vijey
P
,
Posorske
B
,
Machlus
KR
.
In vitro culture of murine megakaryocytes from fetal liver-derived hematopoietic stem cells
.
Platelets.
2018
;
29
(
6
):
583
-
588
.
20.
Thon
JN
,
Montalvo
A
,
Patel-Hett
S
, et al
.
Cytoskeletal mechanics of proplatelet maturation and platelet release
.
J Cell Biol.
2010
;
191
(
4
):
861
-
874
.
21.
Zimmet
J
,
Ravid
K
.
Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system
.
Exp Hematol.
2000
;
28
(
1
):
3
-
16
.
22.
Fantin
VR
,
St.-Pierre
J
,
Leder
P
.
Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance
.
Cancer Cell.
2006
;
9
(
6
):
425
-
434
.
23.
Greenberg
SM
,
Rosenthal
DS
,
Greeley
TA
,
Tantravahi
R
,
Handin
RI
.
Characterization of a new megakaryocytic cell line: the Dami cell
.
Blood.
1988
;
72
(
6
):
1968
-
1977
.
24.
Dever
TE
,
Green
R
.
The elongation, termination, and recycling phases of translation in eukaryotes
.
Cold Spring Harb Perspect Biol.
2012
;
4
(
7
):
a013706
.
25.
Anger
AM
,
Armache
JP
,
Berninghausen
O
, et al
.
Structures of the human and Drosophila 80S ribosome
.
Nature.
2013
;
497
(
7447
):
80
-
85
.
26.
Shi
N
,
Chen
X
,
Liu
R
, et al
.
Eukaryotic elongation factors 2 promotes tumor cell proliferation and correlates with poor prognosis in ovarian cancer
.
Tissue Cell.
2018
;
53
:
53
-
60
.
27.
Mills
EW
,
Wangen
J
,
Green
R
,
Ingolia
NT
.
Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets
.
Cell Rep.
2016
;
17
(
1
):
1
-
10
.
28.
Kollmann
K
,
Warsch
W
,
Gonzalez-Arias
C
, et al
.
A novel signalling screen demonstrates that CALR mutations activate essential MAPK signalling and facilitate megakaryocyte differentiation
.
Leukemia.
2017
;
31
(
4
):
934
-
944
.
29.
Woodford
MR
,
Chen
VZ
,
Backe
SJ
,
Bratslavsky
G
,
Mollapour
M
.
Structural and functional regulation of lactate dehydrogenase-A in cancer
.
Future Med Chem.
2020
;
12
(
5
):
439
-
455
.
30.
Kolappan
S
,
Shen
DL
,
Mosi
R
, et al
.
Structures of lactate dehydrogenase A (LDHA) in apo, ternary and inhibitor-bound forms
.
Acta Crystallogr D Biol Crystallogr.
2015
;
71
(
pt 2
):
185
-
195
.
31.
Qiu
L
,
Gulotta
M
,
Callender
R
.
Lactate dehydrogenase undergoes a substantial structural change to bind its substrate
.
Biophys J.
2007
;
93
(
5
):
1677
-
1686
.
32.
Endo
Y
,
Sawasaki
T
.
Cell-free expression systems for eukaryotic protein production
.
Curr Opin Biotechnol.
2006
;
17
(
4
):
373
-
380
.
33.
Spirin
AS
,
Baranov
VI
,
Ryabova
LA
,
Ovodov
SY
,
Alakhov
YB
.
A continuous cell-free translation system capable of producing polypeptides in high yield
.
Science.
1988
;
242
(
4882
):
1162
-
1164
.
34.
Psaila
B
,
Petrovic
A
,
Page
LK
,
Menell
J
,
Schonholz
M
,
Bussel
JB
.
Intracranial hemorrhage (ICH) in children with immune thrombocytopenia (ITP): study of 40 cases
.
Blood.
2009
;
114
(
23
):
4777
-
4783
.
35.
Eto
K
,
Kunishima
S
.
Linkage between the mechanisms of thrombocytopenia and thrombopoiesis
.
Blood.
2016
;
127
(
10
):
1234
-
1241
.
36.
Krishnamoorthy
G
,
Kaiser
P
,
Abu Abed
U
, et al
.
FX11 limits Mycobacterium tuberculosis growth and potentiates bactericidal activity of isoniazid through host-directed activity
.
Dis Model Mech.
2020
;
13
(
3
):
dmm041954
.
37.
Boudreau
A
,
Purkey
HE
,
Hitz
A
, et al
.
Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition
.
Nat Chem Biol.
2016
;
12
(
10
):
779
-
786
.
38.
Billiard
J
,
Dennison
JB
,
Briand
J
, et al
.
Quinoline 3-sulfonamides inhibit lactate dehydrogenase A and reverse aerobic glycolysis in cancer cells
.
Cancer Metab.
2013
;
1
(
1
):
19
.
39.
Ward
RA
,
Brassington
C
,
Breeze
AL
, et al
.
Design and synthesis of novel lactate dehydrogenase A inhibitors by fragment-based lead generation
.
J Med Chem.
2012
;
55
(
7
):
3285
-
3306
.
40.
Muramatsu
H
,
Sumitomo
M
,
Morinaga
S
, et al
.
Targeting lactate dehydrogenase-A promotes docetaxel-induced cytotoxicity predominantly in castration-resistant prostate cancer cells
.
Oncol Rep.
2019
;
42
(
1
):
224
-
230
.
41.
Sada
N
,
Lee
S
,
Katsu
T
,
Otsuki
T
,
Inoue
T
.
Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy
.
Science.
2015
;
347
(
6228
):
1362
-
1367
.
42.
Nickels
KC
,
Wirrell
EC
.
Stiripentol in the management of epilepsy
.
CNS Drugs.
2017
;
31
(
5
):
405
-
416
.
43.
Frampton
JE
.
Stiripentol: a review in Dravet syndrome
.
Drugs.
2019
;
79
(
16
):
1785
-
1796
.
44.
Li
J
,
Sullivan
JA
,
Ni
H
.
Pathophysiology of immune thrombocytopenia
.
Curr Opin Hematol.
2018
;
25
(
5
):
373
-
381
.
45.
Bidika
E
,
Fayyaz
H
,
Salib
M
, et al
.
Romiplostim and eltrombopag in immune thrombocytopenia as a second-line treatment
.
Cureus.
2020
;
12
(
8
):
e9920
.
46.
Machlus
KR
,
Thon
JN
,
Italiano
JE
Jr
.
Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation
.
Br J Haematol.
2014
;
165
(
2
):
227
-
236
.
47.
Kong
J
,
Lasko
P
.
Translational control in cellular and developmental processes
.
Nat Rev Genet.
2012
;
13
(
6
):
383
-
394
.
48.
Svitkin
YV
,
Agol
VI
.
Translational barrier in central region of encephalomyocarditis virus genome. Modulation by elongation factor 2 (eEF-2)
.
Eur J Biochem.
1983
;
133
(
1
):
145
-
154
.
49.
Kaul
G
,
Pattan
G
,
Rafeequi
T
.
Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation
.
Cell Biochem Funct.
2011
;
29
(
3
):
227
-
234
.
50.
Carlberg
U
,
Nilsson
A
,
Nygård
O
.
Functional properties of phosphorylated elongation factor 2
.
Eur J Biochem.
1990
;
191
(
3
):
639
-
645
.
51.
Nabbout
R
,
Chiron
C
.
Stiripentol: an example of antiepileptic drug development in childhood epilepsies
.
Eur J Paediatr Neurol.
2012
;
16
(
suppl 1
):
S13
-
S17
.
52.
Ying
W
.
NAD+ and NADH in cellular functions and cell death
.
Front Biosci.
2006
;
11
(
1
):
3129
-
3148
.
53.
Schaefer
PM
,
Kalinina
S
,
Rueck
A
,
von Arnim
CAF
,
von Einem
B
.
NADH autofluorescence – a marker on its way to boost bioenergetic research
.
Cytometry A.
2019
;
95
(
1
):
34
-
46
.
54.
Feng
Y
,
Xiong
Y
,
Qiao
T
,
Li
X
,
Jia
L
,
Han
Y
.
Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy
.
Cancer Med.
2018
;
7
(
12
):
6124
-
6136
.
55.
Le
A
,
Cooper
CR
,
Gouw
AM
, et al
.
Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression
.
Proc Natl Acad Sci USA.
2010
;
107
(
5
):
2037
-
2042
.
56.
Jeong
DW
,
Cho
IT
,
Kim
TS
,
Bae
GW
,
Kim
IH
,
Kim
IY
.
Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism
.
Mol Cell Biochem.
2006
;
284
(
1-2
):
1
-
8
.
You do not currently have access to this content.

Sign in via your Institution