• MEKK3-KLF2/4 signaling is required for EHT in the yolk sac and AGM.

  • MEKK3 mediates both inflammatory and hemodynamic stimuli during developmental hematopoiesis.

The hematopoietic stem cells (HSCs) that produce blood for the lifetime of an animal arise from RUNX1+ hemogenic endothelial cells (HECs) in the embryonic vasculature through a process of endothelial-to-hematopoietic transition (EHT). Studies have identified inflammatory mediators and fluid shear forces as critical environmental stimuli for EHT, raising the question of how such diverse inputs are integrated to drive HEC specification. Endothelial cell MEKK3-KLF2/4 signaling can be activated by both fluid shear forces and inflammatory mediators, and it plays roles in cardiovascular development and disease that have been linked to both stimuli. Here we demonstrate that MEKK3 and KLF2/4 are required in endothelial cells for the specification of RUNX1+ HECs in both the yolk sac and dorsal aorta of the mouse embryo and for their transition to intraaortic hematopoietic cluster (IAHC) cells. The inflammatory mediators lipopolysaccharide and interferon-γ increase RUNX1+ HECs in an MEKK3-dependent manner. Maternal administration of catecholamines that stimulate embryo cardiac function and accelerate yolk sac vascular remodeling increases EHT by wild-type but not MEKK3-deficient endothelium. These findings identify MEKK-KLF2/4 signaling as an essential pathway for EHT and provide a molecular basis for the integration of diverse environmental inputs, such as inflammatory mediators and hemodynamic forces, during definitive hematopoiesis.

1.
North
T
,
Gu
TL
,
Stacy
T
, et al
.
Cbfa2 is required for the formation of intra-aortic hematopoietic clusters
.
Development.
1999
;
126
(
1
1
):
2563
-
2575
.
2.
Böiers
C
,
Carrelha
J
,
Lutteropp
M
, et al
.
Lymphomyeloid contribution of an immune-restricted progenitor emerging prior to definitive hematopoietic stem cells
.
Cell Stem Cell.
2013
;
13
(
5
):
535
-
548
.
3.
Hadland
B
,
Yoshimoto
M
.
Many layers of embryonic hematopoiesis: new insights into B-cell ontogeny and the origin of hematopoietic stem cells
.
Exp Hematol.
2018
;
60
:
1
-
9
.
4.
Yoshimoto
M
,
Montecino-Rodriguez
E
,
Ferkowicz
MJ
, et al
.
Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential
.
Proc Natl Acad Sci USA.
2011
;
108
(
4
):
1468
-
1473
.
5.
Palis
J
,
Malik
J
,
McGrath
KE
,
Kingsley
PD
.
Primitive erythropoiesis in the mammalian embryo
.
Int J Dev Biol.
2010
;
54
(
6-7
):
1011
-
1018
.
6.
Ji
RP
,
Phoon
CK
,
Aristizábal
O
,
McGrath
KE
,
Palis
J
,
Turnbull
DH
.
Onset of cardiac function during early mouse embryogenesis coincides with entry of primitive erythroblasts into the embryo proper
.
Circ Res.
2003
;
92
(
2
):
133
-
135
.
7.
Medvinsky
A
,
Dzierzak
E
.
Definitive hematopoiesis is autonomously initiated by the AGM region
.
Cell.
1996
;
86
(
6
):
897
-
906
.
8.
de Bruijn
MF
,
Speck
NA
,
Peeters
MC
,
Dzierzak
E
.
Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo
.
EMBO J.
2000
;
19
(
11
):
2465
-
2474
.
9.
Wu
Y
,
Hirschi
KK
.
Regulation of hemogenic endothelial cell development and function
.
Annu Rev Physiol.
2021
;
83
(
1
):
17
-
37
.
10.
Kwan
W
,
North
TE
.
Netting novel regulators of hematopoiesis and hematologic malignancies in zebrafish
.
Curr Top Dev Biol.
2017
;
124
:
125
-
160
.
11.
Lundin
V
,
Sugden
WW
,
Theodore
LN
, et al
.
YAP regulates hematopoietic stem cell formation in response to the biomechanical forces of blood flow
.
Dev Cell.
2020
;
52
(
4
):
446
-
460.e5
.
12.
North
TE
,
Goessling
W
,
Peeters
M
, et al
.
Hematopoietic stem cell development is dependent on blood flow
.
Cell.
2009
;
137
(
4
):
736
-
748
.
13.
Adamo
L
,
Naveiras
O
,
Wenzel
PL
, et al
.
Biomechanical forces promote embryonic haematopoiesis
.
Nature.
2009
;
459
(
7250
):
1131
-
1135
.
14.
Wang
L
,
Zhang
P
,
Wei
Y
,
Gao
Y
,
Patient
R
,
Liu
F
.
A blood flow-dependent klf2a-NO signaling cascade is required for stabilization of hematopoietic stem cell programming in zebrafish embryos
.
Blood.
2011
;
118
(
15
):
4102
-
4110
.
15.
Frame
JM
,
Fegan
KH
,
Conway
SJ
,
McGrath
KE
,
Palis
J
.
Definitive hematopoiesis in the yolk sac emerges from Wnt-responsive hemogenic endothelium independently of circulation and arterial identity
.
Stem Cells.
2016
;
34
(
2
):
431
-
444
.
16.
Lux
CT
,
Yoshimoto
M
,
McGrath
K
,
Conway
SJ
,
Palis
J
,
Yoder
MC
.
All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac
.
Blood.
2008
;
111
(
7
):
3435
-
3438
.
17.
Espín-Palazón
R
,
Stachura
DL
,
Campbell
CA
, et al
.
Proinflammatory signaling regulates hematopoietic stem cell emergence
.
Cell.
2014
;
159
(
5
):
1070
-
1085
.
18.
Orelio
C
,
Haak
E
,
Peeters
M
,
Dzierzak
E
.
Interleukin-1-mediated hematopoietic cell regulation in the aorta-gonad-mesonephros region of the mouse embryo
.
Blood.
2008
;
112
(
13
):
4895
-
4904
.
19.
He
Q
,
Zhang
C
,
Wang
L
, et al
.
Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates
.
Blood.
2015
;
125
(
7
):
1098
-
1106
.
20.
Li
Y
,
Esain
V
,
Teng
L
, et al
.
Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production
.
Genes Dev.
2014
;
28
(
23
):
2597
-
2612
.
21.
Sawamiphak
S
,
Kontarakis
Z
,
Stainier
DY
.
Interferon gamma signaling positively regulates hematopoietic stem cell emergence
.
Dev Cell.
2014
;
31
(
5
):
640
-
653
.
22.
Kim
PG
,
Canver
MC
,
Rhee
C
, et al
.
Interferon-α signaling promotes embryonic HSC maturation
.
Blood.
2016
;
128
(
2
):
204
-
216
.
23.
Clapes
T
,
Lefkopoulos
S
,
Trompouki
E
.
Stress and non-stress roles of inflammatory signals during HSC emergence and maintenance
.
Front Immunol.
2016
;
7
:
487
.
24.
Dekker
RJ
,
van Soest
S
,
Fontijn
RD
, et al
.
Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Krüppel-like factor (KLF2)
.
Blood.
2002
;
100
(
5
):
1689
-
1698
.
25.
Huddleson
JP
,
Srinivasan
S
,
Ahmad
N
,
Lingrel
JB
.
Fluid shear stress induces endothelial KLF2 gene expression through a defined promoter region
.
Biol Chem.
2004
;
385
(
8
):
723
-
729
.
26.
Parmar
KM
,
Larman
HB
,
Dai
G
, et al
.
Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2
.
J Clin Invest.
2006
;
116
(
1
):
49
-
58
.
27.
Lee
JS
,
Yu
Q
,
Shin
JT
, et al
.
Klf2 is an essential regulator of vascular hemodynamic forces in vivo
.
Dev Cell.
2006
;
11
(
6
):
845
-
857
.
28.
Vermot
J
,
Forouhar
AS
,
Liebling
M
, et al
.
Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart
.
PLoS Biol.
2009
;
7
(
11
):
e1000246
.
29.
Chiplunkar
AR
,
Lung
TK
,
Alhashem
Y
, et al
.
Krüppel-like factor 2 is required for normal mouse cardiac development
.
PLoS One.
2013
;
8
(
2
):
e54891
.
30.
Goddard
LM
,
Duchemin
AL
,
Ramalingan
H
, et al
.
Hemodynamic forces sculpt developing heart valves through a KLF2-WNT9B paracrine signaling axis
.
Dev Cell.
2017
;
43
(
3
):
274
-
289.e5
.
31.
Huang
Q
,
Yang
J
,
Lin
Y
, et al
.
Differential regulation of interleukin 1 receptor and Toll-like receptor signaling by MEKK3
.
Nat Immunol.
2004
;
5
(
1
):
98
-
103
.
32.
Tang
AT
,
Choi
JP
,
Kotzin
JJ
, et al
.
Endothelial TLR4 and the microbiome drive cerebral cavernous malformations
.
Nature.
2017
;
545
(
7654
):
305
-
310
.
33.
Yang
J
,
Boerm
M
,
McCarty
M
, et al
.
Mekk3 is essential for early embryonic cardiovascular development
.
Nat Genet.
2000
;
24
(
3
):
309
-
313
.
34.
Deng
Y
,
Yang
J
,
McCarty
M
,
Su
B
.
MEKK3 is required for endothelium function but is not essential for tumor growth and angiogenesis
.
Am J Physiol Cell Physiol.
2007
;
293
(
4
):
C1404
-
C1411
.
35.
Cullere
X
,
Plovie
E
,
Bennett
PM
,
MacRae
CA
,
Mayadas
TN
.
The cerebral cavernous malformation proteins CCM2L and CCM2 prevent the activation of the MAP kinase MEKK3
.
Proc Natl Acad Sci USA.
2015
;
112
(
46
):
14284
-
14289
.
36.
Fisher
OS
,
Deng
H
,
Liu
D
, et al
.
Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex
.
Nat Commun.
2015
;
6
(
1
):
7937
.
37.
Zhou
Z
,
Rawnsley
DR
,
Goddard
LM
, et al
.
The cerebral cavernous malformation pathway controls cardiac development via regulation of endocardial MEKK3 signaling and KLF expression
.
Dev Cell.
2015
;
32
(
2
):
168
-
180
.
38.
Zhou
Z
,
Tang
AT
,
Wong
WY
, et al
.
Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling
.
Nature.
2016
;
532
(
7597
):
122
-
126
.
39.
Chao
TH
,
Hayashi
M
,
Tapping
RI
,
Kato
Y
,
Lee
JD
.
MEKK3 directly regulates MEK5 activity as part of the big mitogen-activated protein kinase 1 (BMK1) signaling pathway
.
J Biol Chem.
1999
;
274
(
51
):
36035
-
36038
.
40.
Nakamura
K
,
Johnson
GL
.
PB1 domains of MEKK2 and MEKK3 interact with the MEK5 PB1 domain for activation of the ERK5 pathway
.
J Biol Chem.
2003
;
278
(
39
):
36989
-
36992
.
41.
Palis
J
,
Koniski
A
.
Functional analysis of erythroid progenitors by colony-forming assays
.
Methods Mol Biol.
2018
;
1698
:
117
-
132
.
42.
Koyano-Nakagawa
N
,
Kweon
J
,
Iacovino
M
, et al
.
Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression
.
Stem Cells.
2012
;
30
(
8
):
1611
-
1623
.
43.
Lee
LK
,
Ghorbanian
Y
,
Wang
W
, et al
.
LYVE1 marks the divergence of yolk sac definitive hemogenic endothelium from the primitive erythroid lineage
.
Cell Rep.
2016
;
17
(
9
):
2286
-
2298
.
44.
Tang
Y
,
Harrington
A
,
Yang
X
,
Friesel
RE
,
Liaw
L
.
The contribution of the Tie2+ lineage to primitive and definitive hematopoietic cells
.
Genesis.
2010
;
48
(
9
):
563
-
567
.
45.
Basu
P
,
Morris
PE
,
Haar
JL
, et al
.
KLF2 is essential for primitive erythropoiesis and regulates the human and murine embryonic beta-like globin genes in vivo
.
Blood.
2005
;
106
(
7
):
2566
-
2571
.
46.
Basu
P
,
Lung
TK
,
Lemsaddek
W
, et al
.
EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis
.
Blood.
2007
;
110
(
9
):
3417
-
3425
.
47.
Gardiner
MR
,
Gongora
MM
,
Grimmond
SM
,
Perkins
AC
.
A global role for zebrafish klf4 in embryonic erythropoiesis
.
Mech Dev.
2007
;
124
(
9-10
):
762
-
774
.
48.
Yzaguirre
AD
,
Speck
NA
.
Insights into blood cell formation from hemogenic endothelium in lesser-known anatomic sites
.
Dev Dyn.
2016
;
245
(
10
):
1011
-
1028
.
49.
Bos
FL
,
Hawkins
JS
,
Zovein
AC
.
Single-cell resolution of morphological changes in hemogenic endothelium
.
Development.
2015
;
142
(
15
):
2719
-
2724
.
50.
Schmitt
TM
,
Zúñiga-Pflücker
JC
.
T-cell development, doing it in a dish
.
Immunol Rev.
2006
;
209
(
1
):
95
-
102
.
51.
Zhu
Q
,
Gao
P
,
Tober
J
, et al
.
Developmental trajectory of prehematopoietic stem cell formation from endothelium
.
Blood.
2020
;
136
(
7
):
845
-
856
.
52.
Oatley
M
,
Bölükbası
OV
,
Svensson
V
, et al
.
Single-cell transcriptomics identifies CD44 as a marker and regulator of endothelial to haematopoietic transition
.
Nat Commun.
2020
;
11
(
1
):
586
.
53.
Hou
S
,
Li
Z
,
Zheng
X
, et al
.
Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell transcriptomic and functional analyses
.
Cell Res.
2020
;
30
(
5
):
376
-
392
.
54.
Gao
P
,
Chen
C
,
Howell
ED
, et al
.
Transcriptional regulatory network controlling the ontogeny of hematopoietic stem cells
.
Genes Dev.
2020
;
34
(
13-14
):
950
-
964
.
55.
Lucitti
JL
,
Jones
EA
,
Huang
C
,
Chen
J
,
Fraser
SE
,
Dickinson
ME
.
Vascular remodeling of the mouse yolk sac requires hemodynamic force
.
Development.
2007
;
134
(
18
):
3317
-
3326
.
56.
Cha
B
,
Geng
X
,
Mahamud
MR
, et al
.
Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves
.
Genes Dev.
2016
;
30
(
12
):
1454
-
1469
.
57.
Clark
PR
,
Jensen
TJ
,
Kluger
MS
, et al
.
MEK5 is activated by shear stress, activates ERK5 and induces KLF4 to modulate TNF responses in human dermal microvascular endothelial cells
.
Microcirculation.
2011
;
18
(
2
):
102
-
117
.
58.
SenBanerjee
S
,
Lin
Z
,
Atkins
GB
, et al
.
KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation
.
J Exp Med.
2004
;
199
(
10
):
1305
-
1315
.
59.
Dekker
RJ
,
van Thienen
JV
,
Rohlena
J
, et al
.
Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes
.
Am J Pathol.
2005
;
167
(
2
):
609
-
618
.
60.
Groenendijk
BC
,
Hierck
BP
,
Vrolijk
J
, et al
.
Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo
.
Circ Res.
2005
;
96
(
12
):
1291
-
1298
.
61.
Huddleson
JP
,
Ahmad
N
,
Lingrel
JB
.
Up-regulation of the KLF2 transcription factor by fluid shear stress requires nucleolin
.
J Biol Chem.
2006
;
281
(
22
):
15121
-
15128
.
62.
Wang
N
,
Miao
H
,
Li
YS
, et al
.
Shear stress regulation of Krüppel-like factor 2 expression is flow pattern-specific
.
Biochem Biophys Res Commun.
2006
;
341
(
4
):
1244
-
1251
.
63.
Liu
M
,
Kluger
MS
,
D’Alessio
A
,
García-Cardeña
G
,
Pober
JS
.
Regulation of arterial-venous differences in tumor necrosis factor responsiveness of endothelial cells by anatomic context
.
Am J Pathol.
2008
;
172
(
4
):
1088
-
1099
.
64.
Villarreal
G
Jr
,
Zhang
Y
,
Larman
HB
,
Gracia-Sancho
J
,
Koo
A
,
García-Cardeña
G
.
Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells
.
Biochem Biophys Res Commun.
2010
;
391
(
1
):
984
-
989
.
65.
Heckel
E
,
Boselli
F
,
Roth
S
, et al
.
Oscillatory flow modulates mechanosensitive klf2a expression through trpv4 and trpp2 during heart valve development
.
Curr Biol.
2015
;
25
(
10
):
1354
-
1361
.
66.
Jahnsen
ED
,
Trindade
A
,
Zaun
HC
,
Lehoux
S
,
Duarte
A
,
Jones
EA
.
Notch1 is pan-endothelial at the onset of flow and regulated by flow
.
PLoS One.
2015
;
10
(
4
):
e0122622
.
67.
Wu
L
,
Chen
X
,
Zhao
J
, et al
.
A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4-ERK5 axis
.
J Exp Med.
2015
;
212
(
10
):
1571
-
1587
.
68.
Chiplunkar
AR
,
Curtis
BC
,
Eades
GL
, et al
.
The Krüppel-like factor 2 and Krüppel-like factor 4 genes interact to maintain endothelial integrity in mouse embryonic vasculogenesis
.
BMC Dev Biol.
2013
;
13
(
1
):
40
.
69.
Sangwung
P
,
Zhou
G
,
Nayak
L
, et al
.
KLF2 and KLF4 control endothelial identity and vascular integrity
.
JCI Insight.
2017
;
2
(
4
):
e91700
.
70.
Kasaai
B
,
Caolo
V
,
Peacock
HM
, et al
.
Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling
.
Sci Rep.
2017
;
7
(
1
):
43817
.
71.
Thomas
SA
,
Matsumoto
AM
,
Palmiter
RD
.
Noradrenaline is essential for mouse fetal development
.
Nature.
1995
;
374
(
6523
):
643
-
646
.
72.
Zhou
QY
,
Quaife
CJ
,
Palmiter
RD
.
Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development
.
Nature.
1995
;
374
(
6523
):
640
-
643
.
73.
Portbury
AL
,
Chandra
R
,
Groelle
M
, et al
.
Catecholamines act via a beta-adrenergic receptor to maintain fetal heart rate and survival
.
Am J Physiol Heart Circ Physiol.
2003
;
284
(
6
):
H2069
-
H2077
.
74.
le Noble
F
,
Moyon
D
,
Pardanaud
L
, et al
.
Flow regulates arterial-venous differentiation in the chick embryo yolk sac
.
Development.
2004
;
131
(
2
):
361
-
375
.
75.
Udan
RS
,
Vadakkan
TJ
,
Dickinson
ME
.
Dynamic responses of endothelial cells to changes in blood flow during vascular remodeling of the mouse yolk sac
.
Development.
2013
;
140
(
19
):
4041
-
4050
.
76.
Wang
X
,
Zhang
F
,
Chen
F
, et al
.
MEKK3 regulates IFN-gamma production in T cells through the Rac1/2-dependent MAPK cascades
.
J Immunol.
2011
;
186
(
10
):
5791
-
5800
.
77.
Lis
R
,
Karrasch
CC
,
Poulos
MG
, et al
.
Conversion of adult endothelium to immunocompetent haematopoietic stem cells
.
Nature.
2017
;
545
(
7655
):
439
-
445
.
78.
Bergen
V
,
Lange
M
,
Peidli
S
,
Wolf
FA
,
Theis
FJ
.
Generalizing RNA velocity to transient cell states through dynamical modeling
.
Nat Biotechnol.
2020
;
38
(
12
):
1408
-
1414
.
79.
Aibar
S
,
González-Blas
CB
,
Moerman
T
, et al
.
SCENIC: single-cell regulatory network inference and clustering
.
Nat Methods.
2017
;
14
(
11
):
1083
-
1086
.
You do not currently have access to this content.

Sign in via your Institution

Sign In