• Mice with inactivation of NOX2, globally or in macrophages, spontaneously acquire an activated alveolar macrophage phenotype by adulthood.

  • Epigenetic and transcriptional profiles of NOX2-deleted AMs are influence by their niche and primed to generate inflammation.

The leukocyte NADPH oxidase 2 (NOX2) plays a key role in pathogen killing and immunoregulation. Genetic defects in NOX2 result in chronic granulomatous disease (CGD), associated with microbial infections and inflammatory disorders, often involving the lung. Alveolar macrophages (AMs) are the predominant immune cell in the airways at steady state, and limiting their activation is important, given the constant exposure to inhaled materials, yet the importance of NOX2 in this process is not well understood. In this study, we showed a previously undescribed role for NOX2 in maintaining lung homeostasis by suppressing AM activation, in CGD mice or mice with selective loss of NOX2 preferentially in macrophages. AMs lacking NOX2 had increased cytokine responses to Toll-like receptor-2 (TLR2) and TLR4 stimulation ex vivo. Moreover, between 4 and 12 week of age, mice with global NOX2 deletion developed an activated CD11bhigh subset of AMs with epigenetic and transcriptional profiles reflecting immune activation compared with WT AMs. The presence of CD11bhigh AMs in CGD mice correlated with an increased number of alveolar neutrophils and proinflammatory cytokines at steady state and increased lung inflammation after insults. Moreover, deletion of NOX2 preferentially in macrophages was sufficient for mice to develop an activated CD11bhigh AM subset and accompanying proinflammatory sequelae. In addition, we showed that the altered resident macrophage transcriptional profile in the absence of NOX2 is tissue specific, as those changes were not seen in resident peritoneal macrophages. Thus, these data demonstrate that the absence of NOX2 in alveolar macrophages leads to their proinflammatory remodeling and dysregulates alveolar homeostasis.

1.
Dinauer
MC
.
Inflammatory consequences of inherited disorders affecting neutrophil function
.
Blood.
2019
;
133
(
20
):
2130
-
2139
.
2.
Dinauer
MC
.
Primary immune deficiencies with defects in neutrophil function
.
Hematology Am Soc Hematol Educ Program.
2016
;
2016
:
43
-
50
.
3.
Campos
LC
,
Di Colo
G
,
Dattani
V
, et al
.
Long-term outcomes for adults with chronic granulomatous disease in the United Kingdom
.
J Allergy Clin Immunol.
2021
;
147
(
3
):
1104
-
1107
.
4.
Dunogué
B
,
Pilmis
B
,
Mahlaoui
N
, et al
.
Chronic granulomatous disease in patients reaching adulthood: a nationwide study in France
.
Clin Infect Dis.
2017
;
64
(
6
):
767
-
775
.
5.
Salvator
H
,
Mahlaoui
N
,
Catherinot
E
, et al
.
Pulmonary manifestations in adult patients with chronic granulomatous disease
.
Eur Respir J.
2015
;
45
(
6
):
1613
-
1623
.
6.
Liese
J
,
Kloos
S
,
Jendrossek
V
, et al
.
Long-term follow-up and outcome of 39 patients with chronic granulomatous disease
.
J Pediatr.
2000
;
137
(
5
):
687
-
693
.
7.
Khaldi
H
,
Marchand-Adam
S
,
Kannengiesser
C
, et al
.
Diffuse interstitial pneumonia and pulmonary hypertension: a novel manifestation of chronic granulomatous disease
.
Eur Respir J.
2009
;
33
(
6
):
1498
-
1502
.
8.
Kawai
T
,
Watanabe
N
,
Yokoyama
M
, et al
.
Interstitial lung disease with multiple microgranulomas in chronic granulomatous disease
.
J Clin Immunol.
2014
;
34
(
8
):
933
-
940
.
9.
Liu
Q
,
Cheng
LI
,
Yi
L
, et al
.
p47phox deficiency induces macrophage dysfunction resulting in progressive crystalline macrophage pneumonia
.
Am J Pathol.
2009
;
174
(
1
):
153
-
163
.
10.
Harbord
M
,
Novelli
M
,
Canas
B
, et al
.
Ym1 is a neutrophil granule protein that crystallizes in p47phox-deficient mice
.
J Biol Chem.
2002
;
277
(
7
):
5468
-
5475
.
11.
Garbi
N
,
Lambrecht
BN
.
Location, function, and ontogeny of pulmonary macrophages during the steady state
.
Pflugers Arch.
2017
;
469
(
3-4
):
561
-
572
.
12.
Guilliams
M
,
Svedberg
FR
.
Does tissue imprinting restrict macrophage plasticity?
Nat Immunol.
2021
;
22
(
2
):
118
-
127
.
13.
Kierdorf
K
,
Prinz
M
,
Geissmann
F
,
Gomez Perdiguero
E
.
Development and function of tissue resident macrophages in mice
.
Semin Immunol.
2015
;
27
(
6
):
369
-
378
.
14.
Amit
I
,
Winter
DR
,
Jung
S
.
The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis
[published correction appears in Nat Immunol. 2017;18(2):246].
Nat Immunol.
2016
;
17
(
1
):
18
-
25
.
15.
Troutman
TD
,
Kofman
E
,
Glass
CK
.
Exploiting dynamic enhancer landscapes to decode macrophage and microglia phenotypes in health and disease
.
Mol Cell.
2021
;
81
(
19
):
3888
-
3903
.
16.
Blériot
C
,
Chakarov
S
,
Ginhoux
F
.
Determinants of resident tissue macrophage identity and function
.
Immunity.
2020
;
52
(
6
):
957
-
970
.
17.
Chakarov
S
,
Lim
HY
,
Tan
L
, et al
.
Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches
.
Science.
2019
;
363
(
6432
):
eaau0964
.
18.
Gosselin
D
,
Link
VM
,
Romanoski
CE
, et al
.
Environment drives selection and function of enhancers controlling tissue-specific macrophage identities
.
Cell.
2014
;
159
(
6
):
1327
-
1340
.
19.
Okabe
Y
,
Medzhitov
R
.
Tissue biology perspective on macrophages
.
Nat Immunol.
2016
;
17
(
1
):
9
-
17
.
20.
Lavin
Y
,
Winter
D
,
Blecher-Gonen
R
, et al
.
Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment
.
Cell.
2014
;
159
(
6
):
1312
-
1326
.
21.
Natoli
G
,
Ostuni
R
.
Adaptation and memory in immune responses
.
Nat Immunol.
2019
;
20
(
7
):
783
-
792
.
22.
Glass
CK
,
Natoli
G
.
Molecular control of activation and priming in macrophages
.
Nat Immunol.
2016
;
17
(
1
):
26
-
33
.
23.
Mowat
AM
,
Scott
CL
,
Bain
CC
.
Barrier-tissue macrophages: functional adaptation to environmental challenges
.
Nat Med.
2017
;
23
(
11
):
1258
-
1270
.
24.
Hussell
T
,
Bell
TJ
.
Alveolar macrophages: plasticity in a tissue-specific context
.
Nat Rev Immunol.
2014
;
14
(
2
):
81
-
93
.
25.
Pollock
JD
,
Williams
DA
,
Gifford
MA
, et al
.
Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production
.
Nat Genet.
1995
;
9
(
2
):
202
-
209
.
26.
Jacob
CO
,
Yu
N
,
Yoo
DG
, et al
.
Haploinsufficiency of nadph oxidase subunit neutrophil cytosolic factor 2 is sufficient to accelerate full‐blown lupus in nzm 2328 mice
.
Arthritis Rheumatol.
2017
;
69
(
8
):
1647
-
1660
.
27.
Rojas Márquez
JD
,
Li
T
,
McCluggage
ARR
, et al
.
Cutting edge: NOX2 NADPH oxidase controls infection by an intracellular bacterial pathogen through limiting the type 1 IFN response
.
J Immunol.
2021
;
206
(
2
):
323
-
328
.
28.
Song
Z
,
Huang
G
,
Chiquetto Paracatu
L
, et al
.
NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4
.
Blood.
2020
;
135
(
12
):
891
-
903
.
29.
Whitmore
LC
,
Hilkin
BM
,
Goss
KL
, et al
.
NOX2 protects against prolonged inflammation, lung injury, and mortality following systemic insults
.
J Innate Immun.
2013
;
5
(
6
):
565
-
580
.
30.
Whitmore
LC
,
Goss
KL
,
Newell
EA
,
Hilkin
BM
,
Hook
JS
,
Moreland
JG
.
NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome
.
Am J Physiol Lung Cell Mol Physiol.
2014
;
307
(
1
):
L71
-
L82
.
31.
Bagaitkar
J
,
Pech
NK
,
Ivanov
S
, et al
.
NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis
.
Blood.
2015
;
126
(
25
):
2724
-
2733
.
32.
Misharin
AV
,
Morales-Nebreda
L
,
Mutlu
GM
,
Budinger
GR
,
Perlman
H
.
Flow cytometric analysis of macrophages and dendritic cell subsets in the mouse lung
.
Am J Respir Cell Mol Biol.
2013
;
49
(
4
):
503
-
510
.
33.
Liu
Z
,
Gu
Y
,
Chakarov
S
, et al
.
Fate mapping via Ms4a3-expression history traces monocyte-derived cells
.
Cell.
2019
;
178
(
6
):
1509
-
1525.e1519
.
34.
Kamei
A
,
Gao
G
,
Neale
G
, et al
.
Exogenous remodeling of lung resident macrophages protects against infectious consequences of bone marrow-suppressive chemotherapy
.
Proc Natl Acad Sci USA.
2016
;
113
(
41
):
E6153
-
E6161
.
35.
Duan
M
,
Li
WC
,
Vlahos
R
,
Maxwell
MJ
,
Anderson
GP
,
Hibbs
ML
.
Distinct macrophage subpopulations characterize acute infection and chronic inflammatory lung disease
.
J Immunol.
2012
;
189
(
2
):
946
-
955
.
36.
Yin
C
,
Cheng
L
,
Pan
J
, et al
.
Regulatory role of Gpr84 in the switch of alveolar macrophages from CD11blo to CD11bhi status during lung injury process
.
Mucosal Immunol.
2020
;
13
(
6
):
892
-
907
.
37.
Machiels
B
,
Dourcy
M
,
Xiao
X
, et al
.
A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes
[published correction appears in Nat Immunol. 2018;19(9):1035].
Nat Immunol.
2017
;
18
(
12
):
1310
-
1320
.
38.
Guo
L
,
Johnson
RS
,
Schuh
JC
.
Biochemical characterization of endogenously formed eosinophilic crystals in the lungs of mice
.
J Biol Chem.
2000
;
275
(
11
):
8032
-
8037
.
39.
Hoenerhoff
MJ
,
Starost
MF
,
Ward
JM
.
Eosinophilic crystalline pneumonia as a major cause of death in 129S4/SvJae mice
.
Vet Pathol.
2006
;
43
(
5
):
682
-
688
.
40.
Clausen
BE
,
Burkhardt
C
,
Reith
W
,
Renkawitz
R
,
Förster
I
.
Conditional gene targeting in macrophages and granulocytes using LysMcre mice
.
Transgenic Res.
1999
;
8
(
4
):
265
-
277
.
41.
Liberzon
A
,
Birger
C
,
Thorvaldsdóttir
H
,
Ghandi
M
,
Mesirov
JP
,
Tamayo
P
.
The Molecular Signatures Database (MSigDB) hallmark gene set collection
.
Cell Syst.
2015
;
1
(
6
):
417
-
425
.
42.
Fujioka
S
,
Niu
J
,
Schmidt
C
, et al
.
NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity
.
Mol Cell Biol.
2004
;
24
(
17
):
7806
-
7819
.
43.
Kelkka
T
,
Kienhöfer
D
,
Hoffmann
M
, et al
.
Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature
.
Antioxid Redox Signal.
2014
;
21
(
16
):
2231
-
2245
.
44.
Frevert
CW
,
Felgenhauer
J
,
Wygrecka
M
,
Nastase
MV
,
Schaefer
L
.
Danger-associated molecular patterns derived from the extracellular matrix provide temporal control of innate immunity
.
J Histochem Cytochem.
2018
;
66
(
4
):
213
-
227
.
45.
Erridge
C
.
Endogenous ligands of TLR2 and TLR4: agonists or assistants?
J Leukoc Biol.
2010
;
87
(
6
):
989
-
999
.
46.
Ley
K
,
Pramod
AB
,
Croft
M
,
Ravichandran
KS
,
Ting
JP
.
How mouse macrophages sense what is going on
.
Front Immunol.
2016
;
7
:
204
.
47.
Segal
BH
,
Han
W
,
Bushey
JJ
, et al
.
NADPH oxidase limits innate immune responses in the lungs in mice
.
PLoS One.
2010
;
5
(
3
):
e9631
.
48.
Morgenstern
DE
,
Gifford
MA
,
Li
LL
,
Doerschuk
CM
,
Dinauer
MC
.
Absence of respiratory burst in X-linked chronic granulomatous disease mice leads to abnormalities in both host defense and inflammatory response to Aspergillus fumigatus
.
J Exp Med.
1997
;
185
(
2
):
207
-
218
.
49.
Volman
TJ
,
Hendriks
T
,
Goris
RJ
.
Zymosan-induced generalized inflammation: experimental studies into mechanisms leading to multiple organ dysfunction syndrome
.
Shock.
2005
;
23
(
4
):
291
-
297
.
50.
Potera
RM
,
Cao
M
,
Jordan
LF
,
Hogg
RT
,
Hook
JS
,
Moreland
JG
.
Alveolar macrophage chemokine secretion mediates neutrophilic lung injury in Nox2-deficient mice
.
Inflammation.
2019
;
42
(
1
):
185
-
198
.
51.
Han
W
,
Li
H
,
Cai
J
, et al
.
NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidation regulation of NF-κB activity
.
J Immunol.
2013
;
190
(
9
):
4786
-
4794
.
52.
Dumas
A
,
Knaus
UG
.
Raising the ‘good’ oxidants for immune protection
.
Front Immunol.
2021
;
12
:
698042
.
53.
Bekkering
S
,
Domínguez-Andrés
J
,
Joosten
LAB
,
Riksen
NP
,
Netea
MG
.
Trained immunity: reprogramming innate immunity in health and disease
.
Annu Rev Immunol.
2021
;
39
(
1
):
667
-
693
.
54.
Kulikauskaite
J
,
Wack
A
.
Teaching old dogs new tricks? The plasticity of lung alveolar macrophage subsets
.
Trends Immunol.
2020
;
41
(
10
):
864
-
877
.
55.
Aegerter
H
,
Kulikauskaite
J
,
Crotta
S
, et al
.
Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection
.
Nat Immunol.
2020
;
21
(
2
):
145
-
157
.
56.
Roquilly
A
,
Jacqueline
C
,
Davieau
M
, et al
.
Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis
[published correction appears in Nat Immunol. 2020;21(8):962].
Nat Immunol.
2020
;
21
(
6
):
636
-
648
.
57.
Yao
Y
,
Jeyanathan
M
,
Haddadi
S
, et al
.
Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity
.
Cell.
2018
;
175
(
6
):
1634
-
1650.e1617
.
58.
Lavin
Y
,
Mortha
A
,
Rahman
A
,
Merad
M
.
Regulation of macrophage development and function in peripheral tissues
.
Nat Rev Immunol.
2015
;
15
(
12
):
731
-
744
.
You do not currently have access to this content.

Sign in via your Institution

Sign In