• HMGA1 is a novel epigenetic switch that induces aberrant transcriptional networks during MPN progression to MF and AML.

  • HMGA1 deficiency prevents MF and enhances sensitivity to ruxolitinib, prolonging survival in murine models of JAK2V617F AML.

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.

1.
Dameshek
W
.
Some speculations on the myeloproliferative syndromes
.
Blood.
1951
;
6
(
4
):
372
-
375
.
2.
Pardanani
A
,
Fridley
BL
,
Lasho
TL
,
Gilliland
DG
,
Tefferi
A
.
Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders
.
Blood.
2008
;
111
(
5
):
2785
-
2789
.
3.
Tam
CS
,
Nussenzveig
RM
,
Popat
U
, et al
.
The natural history and treatment outcome of blast phase BCR-ABL- myeloproliferative neoplasms
.
Blood.
2008
;
112
(
5
):
1628
-
1637
.
4.
Skoda
RC
.
Hereditary myeloproliferative disorders
.
Haematologica.
2010
;
95
(
1
):
6
-
8
.
5.
Lundberg
P
,
Karow
A
,
Nienhold
R
, et al
.
Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms
.
Blood.
2014
;
123
(
14
):
2220
-
2228
.
6.
Tefferi
A
,
Guglielmelli
P
,
Larson
DR
, et al
.
Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis
.
Blood.
2014
;
124
(
16
):
2507
-
2513, quiz 2615
.
7.
Spivak
JL
,
Considine
M
,
Williams
DM
, et al
.
Two clinical phenotypes in polycythemia vera
.
N Engl J Med.
2014
;
371
(
9
):
808
-
817
.
8.
Spivak
JL
.
Myeloproliferative neoplasms
.
N Engl J Med.
2017
;
376
(
22
):
2168
-
2181
.
9.
Grinfeld
J
,
Nangalia
J
,
Green
AR
.
Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms
.
Haematologica.
2017
;
102
(
1
):
7
-
17
.
10.
Tefferi
A
,
Vannucchi
AM
.
Genetic risk assessment in myeloproliferative neoplasms
.
Mayo Clin Proc.
2017
;
92
(
8
):
1283
-
1290
.
11.
Marcellino
BK
,
Hoffman
R
,
Tripodi
J
, et al
.
Advanced forms of MPNs are accompanied by chromosomal abnormalities that lead to dysregulation of TP53
.
Blood Adv.
2018
;
2
(
24
):
3581
-
3589
.
12.
Schieber
M
,
Crispino
JD
,
Stein
B
.
Myelofibrosis in 2019: moving beyond JAK2 inhibition
.
Blood Cancer J.
2019
;
9
(
9
):
74
.
13.
Karantanos
T
,
Chaturvedi
S
,
Braunstein
EM
, et al
.
Sex determines the presentation and outcomes in MPN and is related to sex-specific differences in the mutational burden
.
Blood Adv.
2020
;
4
(
12
):
2567
-
2576
.
14.
Mascarenhas
JO
,
Rampal
RK
,
Kosiorek
HE
, et al
.
Phase 2 study of ruxolitinib and decitabine in patients with myeloproliferative neoplasm in accelerated and blast phase
.
Blood Adv.
2020
;
4
(
20
):
5246
-
5256
.
15.
Moliterno
AR
,
Kaizer
H
.
Applied genomics in MPN presentation
.
Hematology Am Soc Hematol Educ Program.
2020
;
2020
(
1
):
434
-
439
.
16.
Moliterno
AR
,
Ginzburg
YZ
,
Hoffman
R
.
Clinical insights into the origins of thrombosis in myeloproliferative neoplasms
.
Blood.
2021
;
137
(
9
):
1145
-
1153
.
17.
Grinfeld
J
,
Nangalia
J
,
Baxter
EJ
, et al
.
Classification and personalized prognosis in myeloproliferative neoplasms
.
N Engl J Med.
2018
;
379
(
15
):
1416
-
1430
.
18.
Van Egeren
D
,
Escabi
J
,
Nguyen
M
, et al
.
Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms
.
Cell Stem Cell.
2021
;
28
(
3
):
514
-
523.e9
.
19.
Baxter
EJ
,
Scott
LM
,
Campbell
PJ
, et al;
Cancer Genome Project
.
Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders
.
Lancet.
2005
;
365
(
9464
):
1054
-
1061
.
20.
James
C
,
Ugo
V
,
Le Couédic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature.
2005
;
434
(
7037
):
1144
-
1148
.
21.
Kralovics
R
,
Passamonti
F
,
Buser
AS
, et al
.
A gain-of-function mutation of JAK2 in myeloproliferative disorders
.
N Engl J Med.
2005
;
352
(
17
):
1779
-
1790
.
22.
Levine
RL
,
Wadleigh
M
,
Cools
J
, et al
.
Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis
.
Cancer Cell.
2005
;
7
(
4
):
387
-
397
.
23.
Nielsen
C
,
Bojesen
SE
,
Nordestgaard
BG
,
Kofoed
KF
,
Birgens
HS
.
JAK2V617F somatic mutation in the general population: myeloproliferative neoplasm development and progression rate
.
Haematologica.
2014
;
99
(
9
):
1448
-
1455
.
24.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science.
2019
;
366
(
6465
):
eaan4673
.
25.
Pastore
F
,
Bhagwat
N
,
Pastore
A
, et al
.
PRMT5 inhibition modulates E2F1 methylation and gene-regulatory networks leading to therapeutic efficacy in JAK2V617F-mutant MPN
.
Cancer Discov.
2020
;
10
(
11
):
1742
-
1757
.
26.
Marinaccio
C
,
Suraneni
P
,
Celik
H
, et al
.
LKB1/STK11 is a tumor suppressor in the progression of myeloproliferative neoplasms
.
Cancer Discov.
2021
;
11
(
6
):
1398
-
1410
.
27.
Reddy
KL
,
Feinberg
AP
.
Higher order chromatin organization in cancer
.
Semin Cancer Biol.
2013
;
23
(
2
):
109
-
115
.
28.
Resar
L
,
Chia
L
,
Xian
L
.
Lessons from the crypt: HMGA1-amping up Wnt for stem cells and tumor progression
.
Cancer Res.
2018
;
78
(
8
):
1890
-
1897
.
29.
Resar
LM
.
The high mobility group A1 gene: transforming inflammatory signals into cancer?
Cancer Res.
2010
;
70
(
2
):
436
-
439
.
30.
Ben-Porath
I
,
Thomson
MW
,
Carey
VJ
, et al
.
An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors
.
Nat Genet.
2008
;
40
(
5
):
499
-
507
.
31.
Shah
SN
,
Kerr
C
,
Cope
L
, et al
.
HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks
.
PLoS One.
2012
;
7
(
11
):
e48533
.
32.
Chou
BK
,
Mali
P
,
Huang
X
, et al
.
Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures
.
Cell Res.
2011
;
21
(
3
):
518
-
529
.
33.
Xian
L
,
Georgess
D
,
Huso
T
, et al
.
HMGA1 amplifies Wnt signalling and expands the intestinal stem cell compartment and Paneth cell niche
.
Nat Commun.
2017
;
8
(
1
):
15008
.
34.
Reeves
R
,
Beckerbauer
L
.
HMGI/Y proteins: flexible regulators of transcription and chromatin structure
.
Biochim Biophys Acta.
2001
;
1519
(
1-2
):
13
-
29
.
35.
Pomeroy
SL
,
Tamayo
P
,
Gaasenbeek
M
, et al
.
Prediction of central nervous system embryonal tumour outcome based on gene expression
.
Nature.
2002
;
415
(
6870
):
436
-
442
.
36.
Sarhadi
VK
,
Wikman
H
,
Salmenkivi
K
, et al
.
Increased expression of high mobility group A proteins in lung cancer
.
J Pathol.
2006
;
209
(
2
):
206
-
212
.
37.
Tesfaye
A
,
Di Cello
F
,
Hillion
J
, et al
.
The high-mobility group A1 gene up-regulates cyclooxygenase 2 expression in uterine tumorigenesis
.
Cancer Res.
2007
;
67
(
9
):
3998
-
4004
.
38.
Hillion
J
,
Wood
LJ
,
Mukherjee
M
, et al
.
Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer
.
Mol Cancer Res.
2009
;
7
(
11
):
1803
-
1812
.
39.
Hristov
AC
,
Cope
L
,
Di Cello
F
, et al
.
HMGA1 correlates with advanced tumor grade and decreased survival in pancreatic ductal adenocarcinoma
.
Mod Pathol.
2010
;
23
(
1
):
98
-
104
.
40.
Hillion
J
,
Smail
SS
,
Di Cello
F
, et al
.
The HMGA1-COX-2 axis: a key molecular pathway and potential target in pancreatic adenocarcinoma
.
Pancreatology.
2012
;
12
(
4
):
372
-
379
.
41.
Shah
SN
,
Cope
L
,
Poh
W
, et al
.
HMGA1: a master regulator of tumor progression in triple-negative breast cancer cells
.
PLoS One.
2013
;
8
(
5
):
e63419
.
42.
Belton
A
,
Gabrovsky
A
,
Bae
YK
, et al
.
HMGA1 induces intestinal polyposis in transgenic mice and drives tumor progression and stem cell properties in colon cancer cells
.
PLoS One.
2012
;
7
(
1
):
e30034
.
43.
Hillion
J
,
Roy
S
,
Heydarian
M
, et al
.
The high mobility group A1 (HMGA1) gene is highly overexpressed in human uterine serous carcinomas and carcinosarcomas and drives matrix metalloproteinase-2 (MMP-2) in a subset of tumors
.
Gynecol Oncol.
2016
;
141
(
3
):
580
-
587
.
44.
Gorbounov
M
,
Carleton
NM
,
Asch-Kendrick
RJ
, et al
.
High mobility group A1 (HMGA1) protein and gene expression correlate with ER-negativity and poor outcomes in breast cancer
.
Breast Cancer Res Treat.
2020
;
179
(
1
):
25
-
35
.
45.
Thanos
D
,
Maniatis
T
.
The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene
.
Cell.
1992
;
71
(
5
):
777
-
789
.
46.
Zhao
K
,
Käs
E
,
Gonzalez
E
,
Laemmli
UK
.
SAR-dependent mobilization of histone H1 by HMG-I/Y in vitro: HMG-I/Y is enriched in H1-depleted chromatin
.
EMBO J.
1993
;
12
(
8
):
3237
-
3247
.
47.
Saitoh
Y
,
Laemmli
UK
.
Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold
.
Cell.
1994
;
76
(
4
):
609
-
622
.
48.
Geierstanger
BH
,
Volkman
BF
,
Kremer
W
,
Wemmer
DE
.
Short peptide fragments derived from HMG-I/Y proteins bind specifically to the minor groove of DNA
.
Biochemistry.
1994
;
33
(
17
):
5347
-
5355
.
49.
Thanos
D
,
Maniatis
T
.
Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome
.
Cell.
1995
;
83
(
7
):
1091
-
1100
.
50.
Falvo
JV
,
Thanos
D
,
Maniatis
T
.
Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y)
.
Cell.
1995
;
83
(
7
):
1101
-
1111
.
51.
Maher
JF
,
Nathans
D
.
Multivalent DNA-binding properties of the HMG-1 proteins
.
Proc Natl Acad Sci USA.
1996
;
93
(
13
):
6716
-
6720
.
52.
Huth
JR
,
Bewley
CA
,
Nissen
MS
, et al
.
The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif
.
Nat Struct Biol.
1997
;
4
(
8
):
657
-
665
.
53.
Hillion
J
,
Dhara
S
,
Sumter
TF
, et al
.
The high-mobility group A1a/signal transducer and activator of transcription-3 axis: an Achilles heel for hematopoietic malignancies?
Cancer Res.
2008
;
68
(
24
):
10121
-
10127
.
54.
Schuldenfrei
A
,
Belton
A
,
Kowalski
J
, et al
.
HMGA1 drives stem cell, inflammatory pathway, and cell cycle progression genes during lymphoid tumorigenesis
.
BMC Genomics.
2011
;
12
(
1
):
549
.
55.
Xu
Y
,
Sumter
TF
,
Bhattacharya
R
, et al
.
The HMG-I oncogene causes highly penetrant, aggressive lymphoid malignancy in transgenic mice and is overexpressed in human leukemia
.
Cancer Res.
2004
;
64
(
10
):
3371
-
3375
.
56.
Di Cello
F
,
Dhara
S
,
Hristov
AC
, et al
.
Inactivation of the Cdkn2a locus cooperates with HMGA1 to drive T-cell leukemogenesis
.
Leuk Lymphoma.
2013
;
54
(
8
):
1762
-
1768
.
57.
Roy
S
,
Di Cello
F
,
Kowalski
J
, et al
.
HMGA1 overexpression correlates with relapse in childhood B-lineage acute lymphoblastic leukemia
.
Leuk Lymphoma.
2013
;
54
(
11
):
2565
-
2567
.
58.
Wood
LJ
,
Mukherjee
M
,
Dolde
CE
, et al
.
HMG-I/Y, a new c-Myc target gene and potential oncogene
.
Mol Cell Biol.
2000
;
20
(
15
):
5490
-
5502
.
59.
Wood
LJ
,
Maher
JF
,
Bunton
TE
,
Resar
LM
.
The oncogenic properties of the HMG-I gene family
.
Cancer Res.
2000
;
60
(
15
):
4256
-
4261
.
60.
Nelson
DM
,
Joseph
B
,
Hillion
J
,
Segal
J
,
Karp
JE
,
Resar
LM
.
Flavopiridol induces BCL-2 expression and represses oncogenic transcription factors in leukemic blasts from adults with refractory acute myeloid leukemia
.
Leuk Lymphoma.
2011
;
52
(
10
):
1999
-
2006
.
61.
Karp
JE
,
Smith
BD
,
Resar
LS
, et al
.
Phase 1 and pharmacokinetic study of bolus-infusion flavopiridol followed by cytosine arabinoside and mitoxantrone for acute leukemias
.
Blood.
2011
;
117
(
12
):
3302
-
3310
.
62.
Bao
EL
,
Nandakumar
SK
,
Liao
X
, et al;
23andMe Research Team
.
Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells
.
Nature.
2020
;
586
(
7831
):
769
-
775
.
63.
Skarnes
WC
,
Rosen
B
,
West
AP
, et al
.
A conditional knockout resource for the genome-wide study of mouse gene function
.
Nature.
2011
;
474
(
7351
):
337
-
342
.
64.
Xing
S
,
Wanting
TH
,
Zhao
W
, et al
.
Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice
.
Blood.
2008
;
111
(
10
):
5109
-
5117
.
65.
Spivak
JL
,
Merchant
A
,
Williams
DM
, et al
.
Thrombopoietin is required for full phenotype expression in a JAK2V617F transgenic mouse model of polycythemia vera
.
PLoS One.
2020
;
15
(
6
):
e0232801
.
66.
Mayle
A
,
Luo
M
,
Jeong
M
,
Goodell
MA
.
Flow cytometry analysis of murine hematopoietic stem cells
.
Cytometry A.
2013
;
83
(
1
):
27
-
37
.
67.
Freitas
C
,
Wittner
M
,
Nguyen
J
, et al
.
Lymphoid differentiation of hematopoietic stem cells requires efficient Cxcr4 desensitization
.
J Exp Med.
2017
;
214
(
7
):
2023
-
2040
.
68.
Gudmundsson
KO
,
Nguyen
N
,
Oakley
K
, et al
.
Prdm16 is a critical regulator of adult long-term hematopoietic stem cell quiescence
.
Proc Natl Acad Sci USA.
2020
;
117
(
50
):
31945
-
31953
.
69.
Buenrostro
JD
,
Giresi
PG
,
Zaba
LC
,
Chang
HY
,
Greenleaf
WJ
.
Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position
.
Nat Methods.
2013
;
10
(
12
):
1213
-
1218
.
70.
Psaila
B
,
Wang
G
,
Rodriguez-Meira
A
, et al;
NIH Intramural Sequencing Center
.
Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets
.
Mol Cell.
2020
;
78
(
3
):
477
-
492.e8
.
71.
Rodriguez-Meira
A
,
Buck
G
,
Clark
SA
, et al
.
Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing
.
Mol Cell.
2019
;
73
(
6
):
1292
-
1305.e8
.
72.
Dingler
FA
,
Wang
M
,
Mu
A
, et al
.
Two aldehyde clearance systems are essential to prevent lethal formaldehyde accumulation in mice and humans
.
Mol Cell.
2020
;
80
(
6
):
996
-
1012.e9
.
73.
Greenberg
SM
,
Rosenthal
DS
,
Greeley
TA
,
Tantravahi
R
,
Handin
RI
.
Characterization of a new megakaryocytic cell line: the Dami cell
.
Blood.
1988
;
72
(
6
):
1968
-
1977
.
74.
MacLeod
RA
,
Dirks
WG
,
Reid
YA
,
Hay
RJ
,
Drexler
HG
.
Identity of original and late passage Dami megakaryocytes with HEL erythroleukemia cells shown by combined cytogenetics and DNA fingerprinting
.
Leukemia.
1997
;
11
(
12
):
2032
-
2038
.
75.
Quentmeier
H
,
MacLeod
RA
,
Zaborski
M
,
Drexler
HG
.
JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders
.
Leukemia.
2006
;
20
(
3
):
471
-
476
.
76.
Fiedler
W
,
Henke
RP
,
Ergün
S
, et al
.
Derivation of a new hematopoietic cell line with endothelial features from a patient with transformed myeloproliferative syndrome: a case report
.
Cancer.
2000
;
88
(
2
):
344
-
351
.
77.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA.
2005
;
102
(
43
):
15545
-
15550
.
78.
Liberzon
A
,
Birger
C
,
Thorvaldsdóttir
H
,
Ghandi
M
,
Mesirov
JP
,
Tamayo
P
.
The Molecular Signatures Database (MSigDB) hallmark gene set collection
.
Cell Syst.
2015
;
1
(
6
):
417
-
425
.
79.
Zini
R
,
Guglielmelli
P
,
Pietra
D
, et al;
AGIMM (AIRC Gruppo Italiano Malattie Mieloproliferative) investigators
.
CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles
.
Blood Cancer J.
2017
;
7
(
12
):
638
.
80.
Paul
F
,
Arkin
Y
,
Giladi
A
, et al
.
Transcriptional heterogeneity and lineage commitment in myeloid progenitors
[published correction appears in Cell. 2016;164(1-2):325].
Cell.
2015
;
163
(
7
):
1663
-
1677
.
81.
Giladi
A
,
Paul
F
,
Herzog
Y
, et al
.
Single-cell characterization of haematopoietic progenitors and their trajectories in homeostasis and perturbed haematopoiesis
.
Nat Cell Biol.
2018
;
20
(
7
):
836
-
846
.
82.
Nam
AS
,
Kim
KT
,
Chaligne
R
, et al
.
Somatic mutations and cell identity linked by genotyping of transcriptomes
.
Nature.
2019
;
571
(
7765
):
355
-
360
.
83.
Izzo
F
,
Lee
SC
,
Poran
A
, et al
.
DNA methylation disruption reshapes the hematopoietic differentiation landscape
.
Nat Genet.
2020
;
52
(
4
):
378
-
387
.
84.
Tsai
FY
,
Keller
G
,
Kuo
FC
, et al
.
An early haematopoietic defect in mice lacking the transcription factor GATA-2
.
Nature.
1994
;
371
(
6494
):
221
-
226
.
85.
Bresnick
EH
,
Jung
MM
,
Katsumura
KR
.
Human GATA2 mutations and hematologic disease: how many paths to pathogenesis?
Blood Adv.
2020
;
4
(
18
):
4584
-
4592
.
86.
Huang
Z
,
Dore
LC
,
Li
Z
, et al
.
GATA-2 reinforces megakaryocyte development in the absence of GATA-1
.
Mol Cell Biol.
2009
;
29
(
18
):
5168
-
5180
.
87.
Menendez-Gonzalez
JB
,
Sinnadurai
S
,
Gibbs
A
, et al
.
Inhibition of GATA2 restrains cell proliferation and enhances apoptosis and chemotherapy mediated apoptosis in human GATA2 overexpressing AML cells
.
Sci Rep.
2019
;
9
(
1
):
12212
.
88.
Akada
H
,
Yan
D
,
Zou
H
,
Fiering
S
,
Hutchison
RE
,
Mohi
MG
.
Conditional expression of heterozygous or homozygous Jak2V617F from its endogenous promoter induces a polycythemia vera-like disease
.
Blood.
2010
;
115
(
17
):
3589
-
3597
.
89.
Iacobucci
I
,
Li
Y
,
Roberts
KG
, et al
.
Truncating erythropoietin receptor rearrangements in acute lymphoblastic leukemia
.
Cancer Cell.
2016
;
29
(
2
):
186
-
200
.
90.
Maude
SL
,
Tasian
SK
,
Vincent
T
, et al
.
Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia
.
Blood.
2012
;
120
(
17
):
3510
-
3518
.
91.
Gilles
L
,
Arslan
AD
,
Marinaccio
C
, et al
.
Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis
.
J Clin Invest.
2017
;
127
(
4
):
1316
-
1320
.
92.
Zingariello
M
,
Sancillo
L
,
Martelli
F
, et al
.
The thrombopoietin/MPL axis is activated in the Gata1low mouse model of myelofibrosis and is associated with a defective RPS14 signature
.
Blood Cancer J.
2017
;
7
(
6
):
e572
.
93.
Vannucchi
AM
,
Pancrazzi
A
,
Guglielmelli
P
, et al
.
Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis
.
Am J Pathol.
2005
;
167
(
3
):
849
-
858
.
94.
Kleppe
M
,
Koche
R
,
Zou
L
, et al
.
Dual targeting of oncogenic activation and inflammatory signaling increases therapeutic efficacy in myeloproliferative neoplasms
[published correction appears in Cancer Cell. 2018;33(4):785–787].
Cancer Cell.
2018
;
33
(
1
):
29
-
43.e7
.
95.
Ikeda
K
,
Mason
PJ
,
Bessler
M
.
3′UTR-truncated Hmga2 cDNA causes MPN-like hematopoiesis by conferring a clonal growth advantage at the level of HSC in mice
.
Blood.
2011
;
117
(
22
):
5860
-
5869
.
96.
Dutta
A
,
Hutchison
RE
,
Mohi
G
.
Hmga2 promotes the development of myelofibrosis in Jak2V617F knockin mice by enhancing TGF-β1 and Cxcl12 pathways
.
Blood.
2017
;
130
(
7
):
920
-
932
.
97.
Ueda
K
,
Ikeda
K
,
Ikezoe
T
, et al
.
Hmga2 collaborates with JAK2V617F in the development of myeloproliferative neoplasms
.
Blood Adv.
2017
;
1
(
15
):
1001
-
1015
.
98.
Marquis
M
,
Beaubois
C
,
Lavallée
VP
, et al
.
High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia
[published correction appears in Blood Cancer J. 2019;9(3):28].
Blood Cancer J.
2018
;
8
(
8
):
68
.
You do not currently have access to this content.

Sign in via your Institution