• Fecal microbial diversity is an independent predictor of CD4 T-cell count 3 months after HCT in recipients of CD34-selected allografts.

  • Increased fecal relative abundance of Staphylococcus in the early post-HCT period is independently associated with worse CD4 T-cell count.

Low intestinal microbial diversity is associated with poor outcomes after allogeneic hematopoietic cell transplantation (HCT). Using 16S rRNA sequencing of 2067 stool samples and flow cytometry data from 2370 peripheral blood samples drawn from 894 patients who underwent allogeneic HCT, we have linked features of the early post-HCT microbiome with subsequent immune cell recovery. We examined lymphocyte recovery and microbiota features in recipients of both unmodified and CD34-selected allografts. We observed that fecal microbial diversity was an independent predictor of CD4 T-cell count 3 months after HCT in recipients of a CD34-selected allograft, who are dependent on de novo lymphopoiesis for their immune recovery. In multivariate models using clinical factors and microbiota features, we consistently observed that increased fecal relative abundance of genus Staphylococcus during the early posttransplant period was associated with worse CD4 T-cell recovery. Our observations suggest that the intestinal bacteria, or the factors they produce, can affect early lymphopoiesis and the homeostasis of allograft-derived T cells after transplantation.

1.
Gratwohl
A
,
Baldomero
H
,
Aljurf
M
, et al;
Worldwide Network of Blood and Marrow Transplantation
.
Hematopoietic stem cell transplantation: a global perspective
.
JAMA.
2010
;
303
(
16
):
1617
-
1624
.
2.
Gooley
TA
,
Chien
JW
,
Pergam
SA
, et al
.
Reduced mortality after allogeneic hematopoietic-cell transplantation
.
N Engl J Med.
2010
;
363
(
22
):
2091
-
2101
.
3.
Keever-Taylor
CA
,
Devine
SM
,
Soiffer
RJ
, et al
.
Characteristics of CliniMACS® System CD34-enriched T cell-depleted grafts in a multicenter trial for acute myeloid leukemia-Blood and Marrow Transplant Clinical Trials Network (BMT CTN) protocol 0303
.
Biol Blood Marrow Transplant.
2012
;
18
(
5
):
690
-
697
.
4.
Ando
T
,
Tachibana
T
,
Tanaka
M
, et al
.
Impact of graft sources on immune reconstitution and survival outcomes following allogeneic stem cell transplantation
.
Blood Adv.
2020
;
4
(
2
):
408
-
419
.
5.
Ringhoffer
M
,
Wiesneth
M
,
Harsdorf
S
, et al
.
CD34 cell selection of peripheral blood progenitor cells using the CliniMACS device for allogeneic transplantation: clinical results in 102 patients
.
Br J Haematol.
2004
;
126
(
4
):
527
-
535
.
6.
Handgretinger
R
,
Klingebiel
T
,
Lang
P
, et al
.
Megadose transplantation of purified peripheral blood CD34(+) progenitor cells from HLA-mismatched parental donors in children
.
Bone Marrow Transplant.
2001
;
27
(
8
):
777
-
783
.
7.
Pasquini
MC
,
Devine
S
,
Mendizabal
A
, et al
.
Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation
.
J Clin Oncol.
2012
;
30
(
26
):
3194
-
3201
.
8.
Impola
U
,
Larjo
A
,
Salmenniemi
U
,
Putkonen
M
,
Itälä-Remes
M
,
Partanen
J
.
Graft immune cell composition associates with clinical outcome of allogeneic hematopoietic stem cell transplantation in patients with AML
.
Front Immunol.
2016
;
7
:
523
.
9.
Martin
PS
,
Li
S
,
Nikiforow
S
, et al
.
Infused total nucleated cell dose is a better predictor of transplant outcomes than CD34+ cell number in reduced-intensity mobilized peripheral blood allogeneic hematopoietic cell transplantation
.
Haematologica.
2016
;
101
(
4
):
499
-
505
.
10.
Bensinger
WI
.
Allogeneic transplantation: peripheral blood vs. bone marrow
.
Curr Opin Oncol.
2012
;
24
(
2
):
191
-
196
.
11.
Andrews
RG
,
Bryant
EM
,
Bartelmez
SH
, et al
.
CD34+ marrow cells, devoid of T and B lymphocytes, reconstitute stable lymphopoiesis and myelopoiesis in lethally irradiated allogeneic baboons
.
Blood.
1992
;
80
(
7
):
1693
-
1701
.
12.
Rocha
B
,
Dautigny
N
,
Pereira
P
.
Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo
.
Eur J Immunol.
1989
;
19
(
5
):
905
-
911
.
13.
de Gast
GC
,
Verdonck
LF
,
Middeldorp
JM
, et al
.
Recovery of T cell subsets after autologous bone marrow transplantation is mainly due to proliferation of mature T cells in the graft
.
Blood.
1985
;
66
(
2
):
428
-
431
.
14.
Mackall
CL
,
Bare
CV
,
Granger
LA
,
Sharrow
SO
,
Titus
JA
,
Gress
RE
.
Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing
.
J Immunol.
1996
;
156
(
12
):
4609
-
4616
.
15.
Ringhoffer
S
,
Rojewski
M
,
Döhner
H
,
Bunjes
D
,
Ringhoffer
M
.
T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/βTREC ratio and thymic naive T cells
.
Haematologica.
2013
;
98
(
10
):
1600
-
1608
.
16.
van Roessel
I
,
Prockop
S
,
Klein
E
, et al
.
Early CD4+ T cell reconstitution as predictor of outcomes after allogeneic hematopoietic cell transplantation
.
Cytotherapy.
2020
;
22
(
9
):
503
-
510
.
17.
Admiraal
R
,
Lindemans
CA
,
van Kesteren
C
, et al
.
Excellent T-cell reconstitution and survival depend on low ATG exposure after pediatric cord blood transplantation
.
Blood.
2016
;
128
(
23
):
2734
-
2741
.
18.
de Koning
C
,
Prockop
S
,
van Roessel
I
, et al
.
CD4+ T-cell reconstitution predicts survival outcomes after acute graft-versus-host-disease: a dual-center validation
.
Blood.
2021
;
137
(
6
):
848
-
855
.
19.
Bayraktar
UD
,
Milton
DR
,
Guindani
M
, et al
.
Optimal threshold and time of absolute lymphocyte count assessment for outcome prediction after bone marrow transplantation
.
Biol Blood Marrow Transplant.
2016
;
22
(
3
):
505
-
513
.
20.
Rigoni
L
,
Scroferneker
ML
,
Pitombeira
BS
, et al
.
Importance of early absolute lymphocyte count after allogeneic stem cell transplantation: a retrospective study
.
Transplant Proc.
2015
;
47
(
2
):
511
-
516
.
21.
Kim
HT
,
Armand
P
,
Frederick
D
, et al
.
Absolute lymphocyte count recovery after allogeneic hematopoietic stem cell transplantation predicts clinical outcome
.
Biol Blood Marrow Transplant.
2015
;
21
(
5
):
873
-
880
.
22.
Goldberg
JD
,
Zheng
J
,
Ratan
R
, et al
.
Early recovery of T-cell function predicts improved survival after T-cell depleted allogeneic transplant
.
Leuk Lymphoma.
2017
;
58
(
8
):
1859
-
1871
.
23.
Politikos
I
,
Lavery
JA
,
Hilden
P
, et al
.
Robust CD4+ T-cell recovery in adults transplanted with cord blood and no antithymocyte globulin
.
Blood Adv.
2020
;
4
(
1
):
191
-
202
.
24.
Ullmann
AJ
,
Schmidt-Hieber
M
,
Bertz
H
, et al;
Infectious Diseases Working Party of the German Society for Hematology and Medical Oncology (AGIHO/DGHO) and the DAG-KBT (German Working Group for Blood and Marrow Transplantation)
.
Infectious diseases in allogeneic haematopoietic stem cell transplantation: prevention and prophylaxis strategy guidelines 2016
.
Ann Hematol.
2016
;
95
(
9
):
1435
-
1455
.
25.
Bejanyan
N
,
Brunstein
CG
,
Cao
Q
, et al
.
Delayed immune reconstitution after allogeneic transplantation increases the risks of mortality and chronic GVHD
.
Blood Adv.
2018
;
2
(
8
):
909
-
922
.
26.
Berger
M
,
Figari
O
,
Bruno
B
, et al
.
Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality
.
Bone Marrow Transplant.
2008
;
41
(
1
):
55
-
62
.
27.
Fedele
R
,
Martino
M
,
Garreffa
C
, et al
.
The impact of early CD4+ lymphocyte recovery on the outcome of patients who undergo allogeneic bone marrow or peripheral blood stem cell transplantation
.
Blood Transfus.
2012
;
10
(
2
):
174
-
180
.
28.
Kim
DH
,
Sohn
SK
,
Won
DI
,
Lee
NY
,
Suh
JS
,
Lee
KB
.
Rapid helper T-cell recovery above 200 x 10 6/l at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation
.
Bone Marrow Transplant.
2006
;
37
(
12
):
1119
-
1128
.
29.
Novitzky
N
,
Davison
GM
,
Hale
G
,
Waldmann
H
.
Immune reconstitution at 6 months following T-cell depleted hematopoietic stem cell transplantation is predictive for treatment outcome
.
Transplantation.
2002
;
74
(
11
):
1551
-
1559
.
30.
Round
JL
,
Mazmanian
SK
.
The gut microbiota shapes intestinal immune responses during health and disease
[Nat Rev Immunol. 2009;9(8):600].
Nat Rev Immunol.
2009
;
9
(
5
):
313
-
323
.
31.
Wu
HJ
,
Wu
E
.
The role of gut microbiota in immune homeostasis and autoimmunity
.
Gut Microbes.
2012
;
3
(
1
):
4
-
14
.
32.
Yan
H
,
Baldridge
MT
,
King
KY
.
Hematopoiesis and the bacterial microbiome
.
Blood.
2018
;
132
(
6
):
559
-
564
.
33.
Khosravi
A
,
Yáñez
A
,
Price
JG
, et al
.
Gut microbiota promote hematopoiesis to control bacterial infection
.
Cell Host Microbe.
2014
;
15
(
3
):
374
-
381
.
34.
Josefsdottir
KS
,
Baldridge
MT
,
Kadmon
CS
,
King
KY
.
Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota
.
Blood.
2017
;
129
(
6
):
729
-
739
.
35.
Hasegawa
M
,
Yang
K
,
Hashimoto
M
, et al
.
Differential release and distribution of Nod1 and Nod2 immunostimulatory molecules among bacterial species and environments
.
J Biol Chem.
2006
;
281
(
39
):
29054
-
29063
.
36.
Balmer
ML
,
Schürch
CM
,
Saito
Y
, et al
.
Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling
.
J Immunol.
2014
;
193
(
10
):
5273
-
5283
.
37.
Clarke
TB
,
Davis
KM
,
Lysenko
ES
,
Zhou
AY
,
Yu
Y
,
Weiser
JN
.
Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity
.
Nat Med.
2010
;
16
(
2
):
228
-
231
.
38.
Mazmanian
SK
,
Liu
CH
,
Tzianabos
AO
,
Kasper
DL
.
An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system
.
Cell.
2005
;
122
(
1
):
107
-
118
.
39.
Staffas
A
,
Burgos da Silva
M
,
Slingerland
AE
, et al
.
Nutritional support from the Intestinal Microbiota Improves Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice
.
Cell Host Microbe.
2018
;
23
(
4
):
447
-
457.e4
.
40.
Schluter
J
,
Peled
JU
,
Taylor
BP
, et al
.
The gut microbiota is associated with immune cell dynamics in humans
.
Nature.
2020
;
588
(
7837
):
303
-
307
.
41.
Peled
JU
,
Gomes
ALC
,
Devlin
SM
, et al
.
Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation
.
N Engl J Med.
2020
;
382
(
9
):
822
-
834
.
42.
Callahan
BJ
,
McMurdie
PJ
,
Holmes
SP
.
Exact sequence variants should replace operational taxonomic units in marker-gene data analysis
.
ISME J.
2017
;
11
(
12
):
2639
-
2643
.
43.
Callahan
BJ
,
McMurdie
PJ
,
Rosen
MJ
,
Han
AW
,
Johnson
AJ
,
Holmes
SP
.
DADA2: High-resolution sample inference from Illumina amplicon data
.
Nat Methods.
2016
;
13
(
7
):
581
-
583
.
44.
van der Maaten
L
,
Hinton
G
.
Visualizing data using t-SNE
.
J Mach Learn Res.
2008
;
9
:
2579
-
2605
.
45.
Segata
N
,
Izard
J
,
Waldron
L
, et al
.
Metagenomic biomarker discovery and explanation
.
Genome Biol.
2011
;
12
(
6
):
R60
.
46.
McArdle
BH
,
Anderson
MJ
.
Fitting multivariate models to community data: a comment on distance‐based redundancy analysis
.
Ecology.
2001
;
82
(
1
):
290
-
297
.
47.
Mallick
H
,
Rahnavard
A
,
McIver
LJ
, et al
.
Multivariable association discovery in population-scale meta-omics studies
.
PLoS Comput Biol.
2021
;
17
(
11
):
e1009442
.
48.
Nearing
JT
,
Douglas
GM
,
Hayes
M
, et al
.
Microbiome differential abundance methods produce disturbingly different results across 38 datasets
.
BioRxiv.
2021
.
49.
Martin
BD
,
Witten
D
,
Willis
AD
.
Modeling microbial abundances and dysbiosis with beta-binomial regression
.
Ann Appl Stat.
2020
;
14
(
1
):
94
-
115
.
50.
Kaul
A
,
Mandal
S
,
Davidov
O
,
Peddada
SD
.
Analysis of microbiome data in the presence of excess zeros
.
Front Microbiol.
2017
;
8
:
2114
.
51.
Paulson
JN
,
Stine
OC
,
Bravo
HC
,
Pop
M
.
Differential abundance analysis for microbial marker-gene surveys
.
Nat Methods.
2013
;
10
(
12
):
1200
-
1202
.
52.
Paulson
JNTH
,
Bravo
HC
.
Longitudinal differential abundance analysis of microbial marker-gene surveys using smoothing splines
.
BioRxiv.
Preprint posted online 10 January
2017
. doi:.
53.
Paulson
JNPM
,
Bravo
HC
. MetagenomeSeq: Statistical analysis for sparse high-throughput sequencing. Bioconductor package. http://cbcb.umd.edu/software/metagenomeSeq. Accessed 7 December 2021.
54.
Taur
Y
,
Xavier
JB
,
Lipuma
L
, et al
.
Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation
.
Clin Infect Dis.
2012
;
55
(
7
):
905
-
914
.
55.
Holler
E
,
Butzhammer
P
,
Schmid
K
, et al
.
Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease
.
Biol Blood Marrow Transplant.
2014
;
20
(
5
):
640
-
645
.
56.
Golob
JL
,
Pergam
SA
,
Srinivasan
S
, et al
.
Stool microbiota at neutrophil recovery is predictive for severe acute graft vs host disease after hematopoietic cell transplantation
.
Clin Infect Dis.
2017
;
65
(
12
):
1984
-
1991
.
57.
Sacco
KA
,
Abraham
RS
.
Consequences of B-cell-depleting therapy: hypogammaglobulinemia and impaired B-cell reconstitution
.
Immunotherapy.
2018
;
10
(
8
):
713
-
728
.
58.
Ottinger
HD
,
Beelen
DW
,
Scheulen
B
,
Schaefer
UW
,
Grosse-Wilde
H
.
Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow
.
Blood.
1996
;
88
(
7
):
2775
-
2779
.
59.
Stein-Thoeringer
CK
,
Nichols
KB
,
Lazrak
A
, et al
.
Lactose drives Enterococcus expansion to promote graft-versus-host disease
.
Science.
2019
;
366
(
6469
):
1143
-
1149
.
60.
Ubeda
C
,
Taur
Y
,
Jenq
RR
, et al
.
Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans
.
J Clin Invest.
2010
;
120
(
12
):
4332
-
4341
.
61.
Harris
B
,
Morjaria
SM
,
Littmann
ER
, et al
.
Gut microbiota predict pulmonary infiltrates after allogeneic hematopoietic cell transplantation
.
Am J Respir Crit Care Med.
2016
;
194
(
4
):
450
-
463
.
62.
Taur
Y
,
Jenq
RR
,
Perales
MA
, et al
.
The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation
.
Blood.
2014
;
124
(
7
):
1174
-
1182
.
63.
Vital
M
,
Howe
AC
,
Tiedje
JM
.
Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data
.
mBio.
2014
;
5
(
2
):
e00889
.
64.
Connors
J
,
Dunn
KA
,
Allott
J
, et al
.
The relationship between fecal bile acids and microbiome community structure in pediatric Crohn’s disease
.
ISME J.
2020
;
14
(
3
):
702
-
713
.
65.
Campbell
C
,
McKenney
PT
,
Konstantinovsky
D
, et al
.
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells
.
Nature.
2020
;
581
(
7809
):
475
-
479
.
66.
Song
X
,
Sun
X
,
Oh
SF
, et al
.
Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis
.
Nature.
2020
;
577
(
7790
):
410
-
415
.
67.
Hang
S
,
Paik
D
,
Yao
L
, et al
.
Bile acid metabolites control TH17 and Treg cell differentiation [published correction appears in Nature. 2020;579:E7]
.
Nature.
2019
;
576
(
7785
):
143
-
148
.
68.
Smith
PM
,
Howitt
MR
,
Panikov
N
, et al
.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
.
Science.
2013
;
341
(
6145
):
569
-
573
.
69.
Han
L
,
Zhang
H
,
Chen
S
, et al
.
Intestinal microbiota can predict acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation
.
Biol Blood Marrow Transplant.
2019
;
25
(
10
):
1944
-
1955
.
70.
Atarashi
K
,
Tanoue
T
,
Oshima
K
, et al
.
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
.
Nature.
2013
;
500
(
7461
):
232
-
236
.
71.
Atarashi
K
,
Tanoue
T
,
Shima
T
, et al
.
Induction of colonic regulatory T cells by indigenous Clostridium species
.
Science.
2011
;
331
(
6015
):
337
-
341
.
72.
Duvallet
C
,
Gibbons
SM
,
Gurry
T
,
Irizarry
RA
,
Alm
EJ
.
Meta-analysis of gut microbiome studies identifies disease-specific and shared responses
.
Nat Commun.
2017
;
8
(
1
):
1784
.
73.
Shreiner
AB
,
Kao
JY
,
Young
VB
.
The gut microbiome in health and in disease
.
Curr Opin Gastroenterol.
2015
;
31
(
1
):
69
-
75
.
74.
Wilmanski
T
,
Rappaport
N
,
Earls
JC
, et al
.
Blood metabolome predicts gut microbiome α-diversity in humans
.
Nat Biotechnol.
2019
;
37
(
10
):
1217
-
1228
.
75.
Rooks
MG
,
Garrett
WS
.
Gut microbiota, metabolites and host immunity
.
Nat Rev Immunol.
2016
;
16
(
6
):
341
-
352
.
76.
Pérez-Cano
FJ
,
González-Castro
A
,
Castellote
C
,
Franch
A
,
Castell
M
.
Influence of breast milk polyamines on suckling rat immune system maturation
.
Dev Comp Immunol.
2010
;
34
(
2
):
210
-
218
.
77.
Kiss
EA
,
Vonarbourg
C
,
Kopfmann
S
, et al
.
Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles
.
Science.
2011
;
334
(
6062
):
1561
-
1565
.
78.
Bröker
BM
,
Mrochen
D
,
Péton
V
.
The T cell response to 
Staphylococcus aureus.
Pathogens.
2016
;
5
(
1
):
E31
.
79.
Kappler
J
,
Kotzin
B
,
Herron
L
, et al
.
V beta-specific stimulation of human T cells by staphylococcal toxins
.
Science.
1989
;
244
(
4906
):
811
-
813
.
80.
Tebartz
C
,
Horst
SA
,
Sparwasser
T
, et al
.
A major role for myeloid-derived suppressor cells and a minor role for regulatory T cells in immunosuppression during Staphylococcus aureus infection
.
J Immunol.
2015
;
194
(
3
):
1100
-
1111
.
81.
Rambaldi
B
,
Kim
HT
,
Reynolds
C
, et al
.
Impaired T- and NK-cell reconstitution after haploidentical HCT with posttransplant cyclophosphamide
.
Blood Adv.
2021
;
5
(
2
):
352
-
364
.
82.
Li
Y
,
Wang
M
,
Fang
X
, et al
.
The impact of different doses of antithymocyte globulin conditioning on immune reconstitution upon hematopoietic stem cell transplantation
.
Transpl Immunol.
2021
;
69
:
101486
.
83.
Khimani
F
,
Ranspach
P
,
Elmariah
H
, et al
.
Increased infections and delayed CD4+ T cell but faster B cell immune reconstitution after post-transplantation cyclophosphamide compared to conventional GVHD prophylaxis in allogeneic transplantation
.
Transplant Cell Ther.
2021
;
27
(
11
):
940
-
948
.
84.
Peled
JU
,
Jenq
RR
,
Holler
E
,
van den Brink
MR
.
Role of gut flora after bone marrow transplantation
.
Nat Microbiol.
2016
;
1
(
4
):
16036
.
You do not currently have access to this content.

Sign in via your Institution