• Novel hemolytic anemia with elevated erythrocyte adenosine deaminase levels is associated with missense mutations (p.R307C/H) in GATA1.

  • Transcription of target genes is selectively altered because of disruption of faithful chromatin occupancy of GATA1 mutants.

Master regulators, such as the hematopoietic transcription factor (TF) GATA1, play an essential role in orchestrating lineage commitment and differentiation. However, the precise mechanisms by which such TFs regulate transcription through interactions with specific cis-regulatory elements remain incompletely understood. Here, we describe a form of congenital hemolytic anemia caused by missense mutations in an intrinsically disordered region of GATA1, with a poorly understood role in transcriptional regulation. Through integrative functional approaches, we demonstrate that these mutations perturb GATA1 transcriptional activity by partially impairing nuclear localization and selectively altering precise chromatin occupancy by GATA1. These alterations in chromatin occupancy and concordant chromatin accessibility changes alter faithful gene expression, with failure to both effectively silence and activate select genes necessary for effective terminal red cell production. We demonstrate how disease-causing mutations can reveal regulatory mechanisms that enable the faithful genomic targeting of master TFs during cellular differentiation.

1.
Spitz
F
,
Furlong
EE
.
Transcription factors: from enhancer binding to developmental control
.
Nat Rev Genet.
2012
;
13
(
9
):
613
-
626
.
2.
Palii
CG
,
Cheng
Q
,
Gillespie
MA
, et al
.
Single-cell proteomics reveal that quantitative changes in co-expressed lineage-specific transcription factors determine cell fate
.
Cell Stem Cell.
2019
;
24
(
5
):
812
-
820.e5
.
3.
Lee
TI
,
Young
RA
.
Transcriptional regulation and its misregulation in disease
.
Cell.
2013
;
152
(
6
):
1237
-
1251
.
4.
Stadhouders
R
,
Filion
GJ
,
Graf
T
.
Transcription factors and 3D genome conformation in cell-fate decisions
.
Nature.
2019
;
569
(
7756
):
345
-
354
.
5.
Lambert
SA
,
Jolma
A
,
Campitelli
LF
, et al
.
The human transcription factors [published correction appears in Cell. 2018;175(2):598-599]
.
Cell.
2018
;
175
(
2
):
598
-
599
.
6.
Crispino
JD
,
Horwitz
MS
.
GATA factor mutations in hematologic disease
.
Blood.
2017
;
129
(
15
):
2103
-
2110
.
7.
Katsumura
KR
,
Bresnick
EH
;
GATA Factor Mechanisms Group
.
The GATA factor revolution in hematology
.
Blood.
2017
;
129
(
15
):
2092
-
2102
.
8.
Drissen
R
,
Buza-Vidas
N
,
Woll
P
, et al
.
Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing
.
Nat Immunol.
2016
;
17
(
6
):
666
-
676
.
9.
Kulessa
H
,
Frampton
J
,
Graf
T
.
GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts
.
Genes Dev.
1995
;
9
(
10
):
1250
-
1262
.
10.
Iwasaki
H
,
Mizuno
S
,
Wells
RA
,
Cantor
AB
,
Watanabe
S
,
Akashi
K
.
GATA-1 converts lymphoid and myelomonocytic progenitors into the megakaryocyte/erythrocyte lineages
.
Immunity.
2003
;
19
(
3
):
451
-
462
.
11.
Wechsler
J
,
Greene
M
,
McDevitt
MA
, et al
.
Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome
.
Nat Genet.
2002
;
32
(
1
):
148
-
152
.
12.
Sankaran
VG
,
Ghazvinian
R
,
Do
R
, et al
.
Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia
.
J Clin Invest.
2012
;
122
(
7
):
2439
-
2443
.
13.
Ludwig
LS
,
Gazda
HT
,
Eng
JC
, et al
.
Altered translation of GATA1 in Diamond-Blackfan anemia
.
Nat Med.
2014
;
20
(
7
):
748
-
753
.
14.
Campbell
AE
,
Wilkinson-White
L
,
Mackay
JP
,
Matthews
JM
,
Blobel
GA
.
Analysis of disease-causing GATA1 mutations in murine gene complementation systems
.
Blood.
2013
;
121
(
26
):
5218
-
5227
.
15.
Nichols
KE
,
Crispino
JD
,
Poncz
M
, et al
.
Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1
.
Nat Genet.
2000
;
24
(
3
):
266
-
270
.
16.
Khajuria
RK
,
Munschauer
M
,
Ulirsch
JC
, et al
.
Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis
.
Cell.
2018
;
173
(
1
):
90
-
103.e19
.
17.
Abdulhay
NJ
,
Fiorini
C
,
Verboon
JM
, et al
.
Impaired human hematopoiesis due to a cryptic intronic GATA1 splicing mutation
.
J Exp Med.
2019
;
216
(
5
):
1050
-
1060
.
18.
Gilles
L
,
Arslan
AD
,
Marinaccio
C
, et al
.
Downregulation of GATA1 drives impaired hematopoiesis in primary myelofibrosis
.
J Clin Invest.
2017
;
127
(
4
):
1316
-
1320
.
19.
Valentine
WN
,
Paglia
DE
,
Tartaglia
AP
,
Gilsanz
F
.
Hereditary hemolytic anemia with increased red cell adenosine deaminase (45- to 70-fold) and decreased adenosine triphosphate
.
Science.
1977
;
195
(
4280
):
783
-
785
.
20.
Miwa
S
,
Fujii
H
,
Matsumoto
N
, et al
.
A case of red-cell adenosine deaminase overproduction associated with hereditary hemolytic anemia found in Japan
.
Am J Hematol.
1978
;
5
(
2
):
107
-
115
.
21.
Pérignon
JL
,
Hamet
M
,
Buc
HA
,
Cartier
PH
,
Derycke
M
.
Biochemical study of a case of hemolytic anemia with increased (85 fold) red cell adenosine deaminase
.
Clin Chim Acta.
1982
;
124
(
2
):
205
-
212
.
22.
Kanno
H
,
Tani
K
,
Fujii
H
, et al
.
Adenosine deaminase (ADA) overproduction associated with congenital hemolytic anemia: case report and molecular analysis
.
Jpn J Exp Med.
1988
;
58
(
1
):
1
-
8
.
23.
Chottiner
EG
,
Ginsburg
D
,
Tartaglia
AP
,
Mitchell
BS
.
Erythrocyte adenosine deaminase overproduction in hereditary hemolytic anemia
.
Blood.
1989
;
74
(
1
):
448
-
453
.
24.
Fujii
H
,
Miwa
S
.
Recent progress in the molecular genetic analysis of erythroenzymopathy
.
Am J Hematol.
1990
;
34
(
4
):
301
-
310
.
25.
Ogura
H
,
Yamamoto
T
,
Utsugisawa
T
, et al
.
The novel missense mutation of GATA1 caused red cell adenosine deaminase overproduction associated with congenital hemolytic anemia [abstract]
.
Blood.
2016
;
128
(
22
). Abstract 400.
26.
Kim
AR
,
Ulirsch
JC
,
Wilmes
S
, et al
.
Functional selectivity in cytokine signaling revealed through a pathogenic EPO mutation
.
Cell.
2017
;
168
(
6
):
1053
-
1064.e15
.
27.
Verboon
JM
,
Mahmut
D
,
Kim
AR
, et al
.
Infantile myelofibrosis and myeloproliferation with CDC42 dysfunction
.
J Clin Immunol.
2020
;
40
(
4
):
554
-
566
.
28.
Mohandas
N
.
Inherited hemolytic anemia: a possessive beginner’s guide
.
Hematology Am Soc Hematol Educ Program.
2018
;
2018
:
377
-
381
.
29.
Adzhubei
IA
,
Schmidt
S
,
Peshkin
L
, et al
.
A method and server for predicting damaging missense mutations
.
Nat Methods.
2010
;
7
(
4
):
248
-
249
.
30.
Rentzsch
P
,
Witten
D
,
Cooper
GM
,
Shendure
J
,
Kircher
M
.
CADD: predicting the deleteriousness of variants throughout the human genome
.
Nucleic Acids Res.
2019
;
47
(
D1
):
D886
-
D894
.
31.
Havrilla
JM
,
Pedersen
BS
,
Layer
RM
,
Quinlan
AR
.
A map of constrained coding regions in the human genome
.
Nat Genet.
2019
;
51
(
1
):
88
-
95
.
32.
Karczewski
KJ
,
Francioli
LC
,
Tiao
G
, et al;
Genome Aggregation Database Consortium
.
The mutational constraint spectrum quantified from variation in 141,456 humans [published correction appears in Nature. 2021;590(7846):E53]
.
Nature.
2020
;
581
(
7809
):
434
-
443
.
33.
Weiss
MJ
,
Yu
C
,
Orkin
SH
.
Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line
.
Mol Cell Biol.
1997
;
17
(
3
):
1642
-
1651
.
34.
Johnson
KD
,
Kim
SI
,
Bresnick
EH
.
Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles
.
Proc Natl Acad Sci USA.
2006
;
103
(
43
):
15939
-
15944
.
35.
Clogg
CC
,
Petkova
E
,
Haritou
A
.
Statistical methods for comparing regression coefficients between models
Am J Sociol.
1995
;
100
(
5
):
1261
-
1293
.
36.
Ludwig
LS
,
Lareau
CA
,
Bao
EL
, et al
.
Transcriptional states and chromatin accessibility underlying human erythropoiesis
.
Cell Rep.
2019
;
27
(
11
):
3228
-
3240.e7
.
37.
Reimand
J
,
Isserlin
R
,
Voisin
V
, et al
.
Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap
.
Nat Protoc.
2019
;
14
(
2
):
482
-
517
.
38.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet.
2016
;
48
(
10
):
1193
-
1203
.
39.
Jain
D
,
Mishra
T
,
Giardine
BM
, et al
.
Dynamics of GATA1 binding and expression response in a GATA1-induced erythroid differentiation system
.
Genom Data.
2015
;
4
:
1
-
7
.
40.
Lamonica
JM
,
Deng
W
,
Kadauke
S
, et al
.
Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes
.
Proc Natl Acad Sci USA.
2011
;
108
(
22
):
E159
-
E168
.
41.
Stonestrom
AJ
,
Hsu
SC
,
Jahn
KS
, et al
.
Functions of BET proteins in erythroid gene expression
.
Blood.
2015
;
125
(
18
):
2825
-
2834
.
42.
Zhao
W
,
Kitidis
C
,
Fleming
MD
,
Lodish
HF
,
Ghaffari
S
.
Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway
.
Blood.
2006
;
107
(
3
):
907
-
915
.
43.
Mészáros
B
,
Erdos
G
,
Dosztányi
Z
.
IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding
.
Nucleic Acids Res.
2018
;
46
(
W1
):
W329
-
W337
.
44.
Romero
P
,
Obradovic
Z
,
Li
X
,
Garner
EC
,
Brown
CJ
,
Dunker
AK
.
Sequence complexity of disordered protein
.
Proteins.
2001
;
42
(
1
):
38
-
48
.
45.
Boija
A
,
Klein
IA
,
Sabari
BR
, et al
.
Transcription factors activate genes through the phase-separation capacity of their activation domains
.
Cell.
2018
;
175
(
7
):
1842
-
1855.e16
.
46.
Kribelbauer
JF
,
Rastogi
C
,
Bussemaker
HJ
,
Mann
RS
.
Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes
.
Annu Rev Cell Dev Biol.
2019
;
35
:
357
-
379
.
47.
Guo
X
,
Bulyk
ML
,
Hartemink
AJ
.
Intrinsic disorder within and flanking the DNA-binding domains of human transcription factors
.
Pac Symp Biocomput.
2012
;
104
-
115
.
48.
Vuzman
D
,
Azia
A
,
Levy
Y
.
Searching DNA via a “Monkey Bar” mechanism: the significance of disordered tails
.
J Mol Biol.
2010
;
396
(
3
):
674
-
684
.
49.
Brodsky
S
,
Jana
T
,
Mittelman
K
, et al
.
Intrinsically disordered regions direct transcription factor in vivo binding specificity
.
Mol Cell.
2020
;
79
(
3
):
459
-
471.e4
.
50.
Brodsky
S
,
Jana
T
,
Barkai
N
.
Order through disorder: the role of intrinsically disordered regions in transcription factor binding specificity
.
Curr Opin Struct Biol.
2021
;
71
:
110
-
115
.
51.
Lejon
S
,
Thong
SY
,
Murthy
A
, et al
.
Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48·FOG-1 complex
.
J Biol Chem.
2011
;
286
(
2
):
1196
-
1203
.
52.
Rodriguez
P
,
Bonte
E
,
Krijgsveld
J
, et al
.
GATA-1 forms distinct activating and repressive complexes in erythroid cells
.
EMBO J.
2005
;
24
(
13
):
2354
-
2366
.
53.
Morinaga
T
,
Enomoto
A
,
Shimono
Y
, et al
.
GDNF-inducible zinc finger protein 1 is a sequence-specific transcriptional repressor that binds to the HOXA10 gene regulatory region
.
Nucleic Acids Res.
2005
;
33
(
13
):
4191
-
4201
.
54.
Gregory
T
,
Yu
C
,
Ma
A
,
Orkin
SH
,
Blobel
GA
,
Weiss
MJ
.
GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression
.
Blood.
1999
;
94
(
1
):
87
-
96
.
55.
Lin
JR
,
Mondal
AM
,
Liu
R
,
Hu
J
.
Minimalist ensemble algorithms for genome-wide protein localization prediction
.
BMC Bioinformatics.
2012
;
13
:
157
.
56.
Zhu
Q
,
Liu
N
,
Orkin
SH
,
Yuan
GC
.
CUT&RUNTools: a flexible pipeline for CUT&RUN processing and footprint analysis
.
Genome Biol.
2019
;
20
(
1
):
192
.
57.
Machanick
P
,
Bailey
TL
.
MEME-ChIP: motif analysis of large DNA datasets
.
Bioinformatics.
2011
;
27
(
12
):
1696
-
1697
.
58.
Behera
V
,
Stonestrom
AJ
,
Hamagami
N
, et al
.
Interrogating histone acetylation and BRD4 as mitotic bookmarks of transcription
.
Cell Rep.
2019
;
27
(
2
):
400
-
415.e5
.
59.
Chiu
TP
,
Comoglio
F
,
Zhou
T
,
Yang
L
,
Paro
R
,
Rohs
R
.
DNAshapeR: an R/Bioconductor package for DNA shape prediction and feature encoding
.
Bioinformatics.
2016
;
32
(
8
):
1211
-
1213
.
60.
Avsec
Ž
,
Weilert
M
,
Shrikumar
A
, et al
.
Base-resolution models of transcription-factor binding reveal soft motif syntax
.
Nat Genet.
2021
;
53
(
3
):
354
-
366
.
61.
Tseng
AM
,
Shrikumar
A
,
Kundaje
A
. Fourier-transform-based  attribution priors improve the interpretability and stability of deep learning models for genomics. https://www.biorxiv.org/content/10.1101/2020.06.11.147272v1. Accessed 2 April 2021.
62.
Lundberg
S
,
Lee
S
. A unified approach to interpreting model predictions. https://arxiv.org/abs/1705.07874. Accessed 2 April 2021.
63.
Reddy
TE
,
Gertz
J
,
Crawford
GE
,
Garabedian
MJ
,
Myers
RM
.
The hypersensitive glucocorticoid response specifically regulates period 1 and expression of circadian genes
.
Mol Cell Biol.
2012
;
32
(
18
):
3756
-
3767
.
64.
Ulirsch
JC
,
Verboon
JM
,
Kazerounian
S
, et al
.
The genetic landscape of Diamond-Blackfan anemia [published correction appears in Am J Hum Genet. 2019;104(2):356]
.
Am J Hum Genet.
2018
;
103
(
6
):
930
-
947
.
65.
Kadauke
S
,
Udugama
MI
,
Pawlicki
JM
, et al
.
Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1
.
Cell.
2012
;
150
(
4
):
725
-
737
.
66.
Crane-Robinson
C
,
Dragan
AI
,
Privalov
PL
.
The extended arms of DNA-binding domains: a tale of tails
.
Trends Biochem Sci.
2006
;
31
(
10
):
547
-
552
.
67.
Liu
X
,
Zhang
Y
,
Chen
Y
, et al
.
In situ capture of chromatin interactions by biotinylated dCas9
.
Cell.
2017
;
170
(
5
):
1028
-
1043.e19
.
68.
Myers
SA
,
Wright
J
,
Peckner
R
,
Kalish
BT
,
Zhang
F
,
Carr
SA
.
Discovery of proteins associated with a predefined genomic locus via dCas9-APEX-mediated proximity labeling
.
Nat Methods.
2018
;
15
(
6
):
437
-
439
.
You do not currently have access to this content.

Sign in via your Institution