• T-cell expression of GPR109A is necessary for metabolic function and alloreactivity.

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a−/−) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a/ T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a−/− T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a−/− T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.

1.
Gill
PA
,
van Zelm
MC
,
Muir
JG
,
Gibson
PR
.
Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders
.
Aliment Pharmacol Ther.
2018
;
48
(
1
):
15
-
34
.
2.
Offermanns
S
.
Hydroxy-carboxylic acid receptor actions in metabolism
.
Trends Endocrinol Metab.
2017
;
28
(
3
):
227
-
236
.
3.
Sivaprakasam
S
,
Bhutia
YD
,
Yang
S
,
Ganapathy
V
.
Short-chain fatty acid transporters: role in colonic homeostasis
.
Compr Physiol.
2017
;
8
(
1
):
299
-
314
.
4.
Cushing
K
,
Alvarado
DM
,
Ciorba
MA
.
Butyrate and mucosal inflammation: new scientific evidence supports clinical observation
.
Clin Transl Gastroenterol.
2015
;
6
(
8
):
e108
.
5.
Kelly
CJ
,
Zheng
L
,
Campbell
EL
, et al
.
Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function
.
Cell Host Microbe.
2015
;
17
(
5
):
662
-
671
.
6.
Furusawa
Y
,
Obata
Y
,
Fukuda
S
, et al
.
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
.
Nature.
2013
;
504
(
7480
):
446
-
450
.
7.
Bajic
D
,
Niemann
A
,
Hillmer
AK
, et al
.
Gut microbiota-derived propionate regulates the expression of Reg3 mucosal lectins and ameliorates experimental colitis in mice
.
J Crohn’s Colitis.
2020
;
14
(
10
):
1462
-
1472
.
8.
Willemsen
LE
,
Koetsier
MA
,
van Deventer
SJ
,
van Tol
EA
.
Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts
.
Gut.
2003
;
52
(
10
):
1442
-
1447
.
9.
Maslowski
KM
,
Vieira
AT
,
Ng
A
, et al
.
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
.
Nature.
2009
;
461
(
7268
):
1282
-
1286
.
10.
Chen
G
,
Ran
X
,
Li
B
, et al
.
Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model
.
EBioMedicine.
2018
;
30
:
317
-
325
.
11.
Smith
PM
,
Howitt
MR
,
Panikov
N
, et al
.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
.
Science.
2013
;
341
(
6145
):
569
-
573
.
12.
Arpaia
N
,
Campbell
C
,
Fan
X
, et al
.
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
.
Nature.
2013
;
504
(
7480
):
451
-
455
.
13.
Taur
Y
,
Jenq
RR
,
Ubeda
C
,
van den Brink
M
,
Pamer
EG
.
Role of intestinal microbiota in transplantation outcomes
.
Best Pract Res Clin Haematol.
2015
;
28
(
2-3
):
155
-
161
.
14.
Docampo
MD
,
Auletta
JJ
,
Jenq
RR
.
Emerging influence of the intestinal microbiota during allogeneic hematopoietic cell transplantation: control the gut and the body will follow
.
Biol Blood Marrow Transplant.
2015
;
21
(
8
):
1360
-
1366
.
15.
Shono
Y
,
Docampo
MD
,
Peled
JU
,
Perobelli
SM
,
Jenq
RR
.
Intestinal microbiota-related effects on graft-versus-host disease
.
Int J Hematol.
2015
;
101
(
5
):
428
-
437
.
16.
Mathewson
ND
,
Jenq
R
,
Mathew
AV
, et al
.
Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease
.
Nat Immunol.
2016
;
17
(
5
):
505
-
513
.
17.
Michonneau
D
,
Latis
E
,
Curis
E
, et al
.
Metabolomics analysis of human acute graft-versus-host disease reveals changes in host and microbiota-derived metabolites
.
Nat Commun.
2019
;
10
(
1
):
5695
.
18.
Shono
Y
,
Docampo
MD
,
Peled
JU
, et al
.
Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice
.
Sci Transl Med.
2016
;
8
(
339
):
339ra71
.
19.
Taur
Y
,
Xavier
JB
,
Lipuma
L
, et al
.
Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation
.
Clin Infect Dis.
2012
;
55
(
7
):
905
-
914
.
20.
Jenq
RR
,
Ubeda
C
,
Taur
Y
, et al
.
Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation
.
J Exp Med.
2012
;
209
(
5
):
903
-
911
.
21.
Romick-Rosendale
LE
,
Haslam
DB
,
Lane
A
, et al
.
Antibiotic exposure and reduced short chain fatty acid production after hematopoietic stem cell transplant
.
Biol Blood Marrow Transplant.
2018
;
24
(
12
):
2418
-
2424
.
22.
Levy
M
,
Thaiss
CA
,
Zeevi
D
, et al
.
Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling
.
Cell.
2015
;
163
(
6
):
1428
-
1443
.
23.
Fujiwara
H
,
Docampo
MD
,
Riwes
M
, et al
.
Microbial metabolite sensor GPR43 controls severity of experimental GVHD
.
Nat Commun.
2018
;
9
(
1
):
3674
.
24.
Tsai
JJ
,
Velardi
E
,
Shono
Y
, et al
.
Nrf2 regulates CD4+ T cell-induced acute graft-versus-host disease in mice
.
Blood.
2018
;
132
(
26
):
2763
-
2774
.
25.
Shono
Y
,
Tuckett
AZ
,
Ouk
S
, et al
.
A small-molecule c-Rel inhibitor reduces alloactivation of T cells without compromising antitumor activity
.
Cancer Discov.
2014
;
4
(
5
):
578
-
591
.
26.
Cooke
KR
,
Kobzik
L
,
Martin
TR
, et al
.
An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin
.
Blood.
1996
;
88
(
8
):
3230
-
3239
.
27.
Stein-Thoeringer
CK
,
Nichols
KB
,
Lazrak
A
, et al
.
Lactose drives Enterococcus expansion to promote graft-versus-host disease
.
Science.
2019
;
366
(
6469
):
1143
-
1149
.
28.
Schaub
A
,
Fütterer
A
,
Pfeffer
K
.
PUMA-G, an IFN-gamma-inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily
.
Eur J Immunol.
2001
;
31
(
12
):
3714
-
3725
.
29.
Lukasova
M
,
Malaval
C
,
Gille
A
,
Kero
J
,
Offermanns
S
.
Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells
.
J Clin Invest.
2011
;
121
(
3
):
1163
-
1173
.
30.
Peterson
MJ
,
Hillman
CC
,
Ashmore
J
.
Nicotinic acid: studies on the mechamism of its antilipolytic action
.
Mol Pharmacol.
1968
;
4
(
1
):
1
-
9
.
31.
Singh
N
,
Gurav
A
,
Sivaprakasam
S
, et al
.
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
.
Immunity.
2014
;
40
(
1
):
128
-
139
.
32.
Zimmerman
MA
,
Singh
N
,
Martin
PM
, et al
.
Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells
.
Am J Physiol Gastrointest Liver Physiol.
2012
;
302
(
12
):
G1405
-
G1415
.
33.
Ferrara
JL
,
Levine
JE
,
Reddy
P
,
Holler
E
.
Graft-versus-host disease
.
Lancet.
2009
;
373
(
9674
):
1550
-
1561
.
34.
Bouazzaoui
A
,
Spacenko
E
,
Mueller
G
, et al
.
Chemokine and chemokine receptor expression analysis in target organs of acute graft-versus-host disease
.
Genes Immun.
2009
;
10
(
8
):
687
-
701
.
35.
Propheter
DC
,
Chara
AL
,
Harris
TA
,
Ruhn
KA
,
Hooper
LV
.
Resistin-like molecule β is a bactericidal protein that promotes spatial segregation of the microbiota and the colonic epithelium
.
Proc Natl Acad Sci USA.
2017
;
114
(
42
):
11027
-
11033
.
36.
Bergstrom
KS
,
Morampudi
V
,
Chan
JM
, et al
.
Goblet cell derived RELM-β recruits CD4+ T cells during infectious colitis to promote protective intestinal epithelial cell proliferation
.
PLoS Pathog.
2015
;
11
(
8
):
e1005108
.
37.
Zhao
D
,
Kim
YH
,
Jeong
S
, et al
.
Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease
.
J Clin Invest.
2018
;
128
(
11
):
4970
-
4979
.
38.
Weber
D
,
Frauenschläger
K
,
Ghimire
S
, et al
.
The association between acute graft-versus-host disease and antimicrobial peptide expression in the gastrointestinal tract after allogeneic stem cell transplantation
.
PLoS One.
2017
;
12
(
9
):
e0185265
.
39.
Holler
E
,
Butzhammer
P
,
Schmid
K
, et al
.
Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease
.
Biol Blood Marrow Transplant.
2014
;
20
(
5
):
640
-
645
.
40.
Jenq
RR
,
Taur
Y
,
Devlin
SM
, et al
.
Intestinal blautia is associated with reduced death from graft-versus-host disease
.
Biol Blood Marrow Transplant.
2015
;
21
(
8
):
1373
-
1383
.
41.
Eriguchi
Y
,
Takashima
S
,
Oka
H
, et al
.
Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins
.
Blood.
2012
;
120
(
1
):
223
-
231
.
42.
Petrovic
A
,
Alpdogan
O
,
Willis
LM
, et al
.
LPAM (alpha 4 beta 7 integrin) is an important homing integrin on alloreactive T cells in the development of intestinal graft-versus-host disease
.
Blood.
2004
;
103
(
4
):
1542
-
1547
.
43.
Norian
LA
,
Latinis
KM
,
Eliason
SL
, et al
.
The regulation of CD95 (Fas) ligand expression in primary T cells: induction of promoter activation in CD95LP-Luc transgenic mice
.
J Immunol.
2000
;
164
(
9
):
4471
-
4480
.
44.
Hughes
PD
,
Belz
GT
,
Fortner
KA
,
Budd
RC
,
Strasser
A
,
Bouillet
P
.
Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity
.
Immunity.
2008
;
28
(
2
):
197
-
205
.
45.
Nishitsuji
K
,
Xiao
J
,
Nagatomo
R
, et al
.
Analysis of the gut microbiome and plasma short-chain fatty acid profiles in a spontaneous mouse model of metabolic syndrome
.
Sci Rep.
2017
;
7
(
1
):
15876
.
46.
Kurita-Ochiai
T
,
Ochiai
K
,
Fukushima
K
.
Butyric acid-induced T-cell apoptosis is mediated by caspase-8 and -9 activation in a Fas-independent manner
.
Clin Diagn Lab Immunol.
2001
;
8
(
2
):
325
-
332
.
47.
Franchina
DG
,
Dostert
C
,
Brenner
D
.
Reactive oxygen species: involvement in T cell signaling and metabolism
.
Trends Immunol.
2018
;
39
(
6
):
489
-
502
.
48.
Sivandzade
F
,
Bhalerao
A
,
Cucullo
L
.
Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe
.
Bio Protoc.
2019
;
9
(
1
):
e3128
.
49.
Eylar
E
,
Rivera-Quinones
C
,
Molina
C
,
Báez
I
,
Molina
F
,
Mercado
CM
.
N-acetylcysteine enhances T cell functions and T cell growth in culture
.
Int Immunol.
1993
;
5
(
1
):
97
-
101
.
50.
Vardhana
SA
,
Hwee
MA
,
Berisa
M
, et al
.
Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen
.
Nat Immunol.
2020
;
21
(
9
):
1022
-
1033
.
51.
Reddy
P
,
Ferrara
JLM
.
Mouse models of graft-versus-host disease.
Cambridge, MA
:
StemBook
;
2008
52.
Ye
L
,
Cao
Z
,
Lai
X
, et al
.
Niacin fine-tunes energy homeostasis through canonical GPR109A signaling
.
FASEB J.
2019
;
33
(
4
):
4765
-
4779
.
53.
Guo
W
,
Liu
J
,
Sun
J
, et al
.
Butyrate alleviates oxidative stress by regulating NRF2 nuclear accumulation and H3K9/14 acetylation via GPR109A in bovine mammary epithelial cells and mammary glands
.
Free Radic Biol Med.
2020
;
152
:
728
-
742
.
54.
Hu
S
,
Kuwabara
R
,
de Haan
BJ
,
Smink
AM
,
de Vos
P
.
Acetate and butyrate improve β-cell metabolism and mitochondrial respiration under oxidative stress
.
Int J Mol Sci.
2020
;
21
(
4
):
1542
.
55.
Cinalli
RM
,
Herman
CE
,
Lew
BO
,
Wieman
HL
,
Thompson
CB
,
Rathmell
JC
.
T cell homeostasis requires G protein-coupled receptor-mediated access to trophic signals that promote growth and inhibit chemotaxis
.
Eur J Immunol.
2005
;
35
(
3
):
786
-
795
.
56.
Kespohl
M
,
Vachharajani
N
,
Luu
M
, et al
.
The microbial metabolite butyrate induces expression of Th1-associated factors in CD4+ T cells
.
Front Immunol.
2017
;
8
:
1036
.
57.
Bachem
A
,
Makhlouf
C
,
Binger
KJ
, et al
.
Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells
.
Immunity.
2019
;
51
(
2
):
285
-
297.e5
.
You do not currently have access to this content.

Sign in via your Institution