• Two novel high-risk subtypes were identified in AYA and adults with B-ALL using integrated RNA-seq and target-capture DNA-seq analyses.

  • Frequencies of novel subtypes were distinct between adults and children, partly accounting for inferior outcome of adults with B-ALL.

The genetic basis of leukemogenesis in adults with B-cell acute lymphoblastic leukemia (B-ALL) is largely unclear, and its clinical outcome remains unsatisfactory. This study aimed to advance the understanding of biological characteristics, improve disease stratification, and identify molecular targets of adult B-ALL. Adolescents and young adults (AYA) (15 to 39 years old, n = 193) and adults (40 to 64 years old, n = 161) with Philadelphia chromosome-negative (Ph) B-ALL were included in this study. Integrated transcriptomic and genetic analyses were used to classify the cohort into defined subtypes. Of the 323 cases included in the RNA sequencing analysis, 278 (86.1%) were classified into 18 subtypes. The ZNF384 subtype (22.6%) was the most prevalent, with 2 novel subtypes (CDX2-high and IDH1/2-mut) identified among cases not assigned to the established subtypes. The CDX2-high subtype (3.4%) was characterized by high expression of CDX2 and recurrent gain of chromosome 1q. The IDH1/2-mut subtype (1.9%) was defined by IDH1 R132C or IDH2 R140Q mutations with specific transcriptional and high-methylation profiles. Both subtypes showed poor prognosis and were considered inferior prognostic factors independent of clinical parameters. Comparison with a previously reported pediatric B-ALL cohort (n = 1003) showed that the frequencies of these subtypes were significantly higher in AYA/adults than in children. We delineated the genetic and transcriptomic landscape of adult B-ALL and identified 2 novel subtypes that predict poor disease outcomes. Our findings highlight the age-dependent distribution of subtypes, which partially accounts for the prognostic differences between adult and pediatric B-ALL.

1.
Moorman
AV
.
The clinical relevance of chromosomal and genomic abnormalities in B-cell precursor acute lymphoblastic leukaemia
.
Blood Rev.
2012
;
26
(
3
):
123
-
135
.
2.
Gu
Z
,
Churchman
ML
,
Roberts
KG
, et al
.
PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia
.
Nat Genet.
2019
;
51
(
2
):
296
-
307
.
3.
Gu
Z
,
Churchman
M
,
Roberts
K
, et al
.
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia
.
Nat Commun.
2016
;
7
:
13331
.
4.
Lilljebjörn
H
,
Henningsson
R
,
Hyrenius-Wittsten
A
, et al
.
Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia
.
Nat Commun.
2016
;
7
(
1
):
1
-
13
.
5.
Liu
YF
,
Wang
BY
,
Zhang
WN
, et al
.
Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia
.
EBioMedicine.
2016
;
8
:
173
-
183
.
6.
Suzuki
K
,
Okuno
Y
,
Kawashima
N
, et al
.
MEF2D-BCL9 fusion gene is associated with high-risk acute B-cell precursor lymphoblastic leukemia in adolescents
.
J Clin Oncol.
2016
;
34
(
28
):
3451
-
3459
.
7.
Yasuda
T
,
Tsuzuki
S
,
Kawazu
M
, et al
.
Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults
.
Nat Genet.
2016
;
48
(
5
):
569
-
574
.
8.
Zhang
J
,
McCastlain
K
,
Yoshihara
H
, et al;
St. Jude Children’s Research Hospital– Washington University Pediatric Cancer Genome Project
.
Deregulation of DUX4 and ERG in acute lymphoblastic leukemia
.
Nat Genet.
2016
;
48
(
12
):
1481
-
1489
.
9.
Hirabayashi
S
,
Ohki
K
,
Nakabayashi
K
, et al;
Tokyo Children’s Cancer Study Group (TCCSG)
.
ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype
.
Haematologica.
2016
;
102
(
1
):
118
-
129
.
10.
Li
JF
,
Dai
YT
,
Lilljebjörn
H
, et al
.
Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases
.
Proc Natl Acad Sci USA.
2018
;
115
(
50
):
E11711
-
E11720
.
11.
Moorman
AV
.
Time for ALL adults to catch up with the children
.
Blood.
2017
;
130
(
16
):
1781
-
1783
.
12.
Hayakawa
F
,
Sakura
T
,
Yujiri
T
, et al;
Japan Adult Leukemia Study Group (JALSG)
.
Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol: a phase II study by the Japan Adult Leukemia Study Group
.
Blood Cancer J.
2014
;
4
(
10
):
e252
.
13.
Sakura
T
,
Hayakawa
F
,
Sugiura
I
, et al
.
High-dose methotrexate therapy significantly improved survival of adult acute lymphoblastic leukemia: a phase III study by JALSG
.
Leukemia.
2017
;
32
(
3
):
626
-
632
.
14.
Kubota
Y
,
Uryu
K
,
Ito
T
, et al
.
Integrated genetic and epigenetic analysis revealed heterogeneity of acute lymphoblastic leukemia in Down syndrome
.
Cancer Sci.
2019
;
110
(
10
):
3358
-
3367
.
15.
Harvey
RC
,
Mullighan
CG
,
Wang
X
, et al
.
Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome
.
Blood.
2010
;
116
(
23
):
4874
-
4884
.
16.
Ueno
H
,
Yoshida
K
,
Shiozawa
Y
, et al
.
Landscape of driver mutations and their clinical impacts in pediatric B-cell precursor acute lymphoblastic leukemia
.
Blood Adv.
2020
;
4
(
20
):
5165
-
5173
.
17.
Watatani
Y
,
Sato
Y
,
Miyoshi
H
, et al
.
Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling
.
Leukemia.
2019
;
33
(
12
):
2867
-
2883
.
18.
Yasuda
T
,
Sanada
M
,
Nishijima
D
, et al
.
Clinical utility of target capture-based panel sequencing in hematological malignancies: A multicenter feasibility study
.
Cancer Sci.
2020
;
111
(
9
):
3367
-
3378
.
19.
Roberts
KG
,
Li
Y
,
Payne-Turner
D
, et al
.
Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia
.
N Engl J Med.
2014
;
371
(
11
):
1005
-
1015
.
20.
Holmfeldt
L
,
Wei
L
,
Diaz-Flores
E
, et al
.
The genomic landscape of hypodiploid acute lymphoblastic leukemia
.
Nat Genet.
2013
;
45
(
3
):
242
-
252
.
21.
Lengerke
C
,
Daley
GQ
.
Caudal genes in blood development and leukemia
.
Ann N Y Acad Sci.
2012
;
1266
(
1
):
47
-
54
.
22.
Rawat
VP
,
Humphries
RK
,
Buske
C
.
Beyond Hox: the role of ParaHox genes in normal and malignant hematopoiesis
.
Blood.
2012
;
120
(
3
):
519
-
527
.
23.
Rawat
VP
,
Thoene
S
,
Naidu
VM
, et al
.
Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia
.
Blood.
2008
;
111
(
1
):
309
-
319
.
24.
Scholl
C
,
Bansal
D
,
Döhner
K
, et al
.
The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis
.
J Clin Invest.
2007
;
117
(
4
):
1037
-
1048
.
25.
Vu
T
,
Straube
J
,
Porter
AH
, et al
.
Hematopoietic stem and progenitor cell-restricted Cdx2 expression induces transformation to myelodysplasia and acute leukemia
.
Nat Commun.
2020
;
11
(
1
):
1
-
5
.
26.
Alharbi
RA
,
Pettengell
R
,
Pandha
HS
,
Morgan
R
.
The role of HOX genes in normal hematopoiesis and acute leukemia
.
Leukemia.
2012
;
27
(
5
):
1000
-
1008
.
27.
Evdokimova
V
,
Tognon
CE
,
Benatar
T
, et al
.
IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors
.
Sci Signal.
2012
;
5
(
255
):
ra92
.
28.
McLeod
C
,
Gout
AM
,
Zhou
X
, et al
.
St. Jude Cloud: a pediatric cancer genomic data-sharing ecosystem
.
Cancer Discov.
2021
;
11
(
5
):
1082
-
1099
.
29.
S
hlush
LI
,
Zandi
S
,
Mitchell
A
, et al;
HALT Pan-Leukemia Gene Panel Consortium
.
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia
.
Nature.
2014
;
506
(
7488
):
328
-
333
.
30.
Suzuki
H
,
Aoki
K
,
Chiba
K
, et al
.
Mutational landscape and clonal architecture in grade II and III gliomas
.
Nat Genet.
2015
;
47
(
5
):
458
-
468
.
31.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med.
2016
;
374
(
23
):
2209
-
2221
.
32.
Molenaar
RJ
,
Maciejewski
JP
,
Wilmink
JW
,
van Noorden
CJF
.
Wild-type and mutated IDH1/2 enzymes and therapy responses
.
Oncogene.
2018
;
37
(
15
):
1949
-
1960
.
33.
Figueroa
ME
,
Abdel-Wahab
O
,
Lu
C
, et al
.
Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
.
Cancer Cell.
2010
;
18
(
6
):
553
-
567
.
34.
Herglotz
J
,
Unrau
L
,
Hauschildt
F
, et al
.
Essential control of early B-cell development by Mef2 transcription factors
.
Blood.
2016
;
127
(
5
):
572
-
581
.
35.
Kong
NR
,
Davis
M
,
Chai
L
,
Winoto
A
,
Tjian
R
.
MEF2C and EBF1 co-regulate B cell-specific transcription
.
PLoS Genet.
2016
;
12
(
2
):
e1005845
.
36.
Scott
CL
,
Omilusik
KD
.
ZEBs: Novel players in immune cell development and function
.
Trends Immunol.
2019
;
40
(
5
):
431
-
446
.
37.
Riedt
T
,
Ebinger
M
,
Salih
HR
, et al
.
Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia
.
Blood.
2009
;
113
(
17
):
4049
-
4051
.
38.
Thoene
S
,
Rawat
VP
,
Heilmeier
B
, et al
.
The homeobox gene CDX2 is aberrantly expressed and associated with an inferior prognosis in patients with acute lymphoblastic leukemia
.
Leukemia.
2009
;
23
(
4
):
649
-
655
.
39.
Rawat
VP
,
Cusan
M
,
Deshpande
A
, et al
.
Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia
.
Proc Natl Acad Sci USA.
2004
;
101
(
3
):
817
-
822
.
40.
Yasuda
T
,
Ueno
T
,
Fukumura
K
, et al
.
Leukemic evolution of donor-derived cells harboring IDH2 and DNMT3A mutations after allogeneic stem cell transplantation
.
Leukemia.
2013
;
28
(
2
):
426
-
428
.
41.
Kang
MR
,
Kim
MS
,
Oh
JE
, et al
.
Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers
.
Int J Cancer.
2009
;
125
(
2
):
353
-
355
.
42.
Andersson
AK
,
Miller
DW
,
Lynch
JA
, et al
.
IDH1 and IDH2 mutations in pediatric acute leukemia
.
Leukemia.
2011
;
25
(
10
):
1570
-
1577
.
43.
Ma
X
,
Liu
Y
,
Liu
Y
, et al
.
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours
.
Nature.
2018
;
555
(
7696
):
371
-
376
.
44.
Abbas
S
,
Lugthart
S
,
Kavelaars
FG
, et al
.
Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value
.
Blood.
2010
;
116
(
12
):
2122
-
2126
.
45.
Hirabayashi
S
,
Seki
M
,
Hasegawa
D
, et al
.
Constitutional abnormalities of IDH1 combined with secondary mutations predispose a patient with Maffucci syndrome to acute lymphoblastic leukemia
.
Pediatr Blood Cancer.
2017
;
64
(
12
):
e26647
.
46.
Zhang
Y
,
Wei
H
,
Tang
K
, et al
.
Mutation analysis of isocitrate dehydrogenase in acute lymphoblastic leukemia
.
Genet Test Mol Biomarkers.
2012
;
16
(
8
):
991
-
995
.
47.
Griffith
M
,
Griffith
OL
,
Krysiak
K
, et al
.
Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia
.
Exp Hematol.
2016
;
44
(
7
):
603
-
613
.
48.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med.
2018
;
378
(
25
):
2386
-
2398
.
49.
Yen
K
,
Travins
J
,
Wang
F
, et al
.
AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations
.
Cancer Discov.
2017
;
7
(
5
):
478
-
493
.
You do not currently have access to this content.

Sign in via your Institution