• CUX1 recruits the histone methyltransferase EHMT2 to sites of DNA damage to promote γH2AX focus formation and DNA damage repair.

  • Loss of CUX1 drives clonal hematopoiesis following chemotherapy and predisposes mice to an aggressive t-MN.

Therapy-related myeloid neoplasms (t-MNs) are high-risk late effects with poorly understood pathogenesis in cancer survivors. It has been postulated that, in some cases, hematopoietic stem and progenitor cells (HSPCs) harboring mutations are selected for by cytotoxic exposures and transform. Here, we evaluate this model in the context of deficiency of CUX1, a transcription factor encoded on chromosome 7q and deleted in half of t-MN cases. We report that CUX1 has a critical early role in the DNA repair process in HSPCs. Mechanistically, CUX1 recruits the histone methyltransferase EHMT2 to DNA breaks to promote downstream H3K9 and H3K27 methylation, phosphorylated ATM retention, subsequent γH2AX focus formation and propagation, and, ultimately, 53BP1 recruitment. Despite significant unrepaired DNA damage sustained in CUX1-deficient murine HSPCs after cytotoxic exposures, they continue to proliferate and expand, mimicking clonal hematopoiesis in patients postchemotherapy. As a consequence, preexisting CUX1 deficiency predisposes mice to highly penetrant and rapidly fatal therapy-related erythroleukemias. These findings establish the importance of epigenetic regulation of HSPC DNA repair and position CUX1 as a gatekeeper in myeloid transformation.

1.
Smith
SM
,
Le Beau
MM
,
Huo
D
, et al
.
Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series
.
Blood.
2003
;
102
(
1
):
43
-
52
.
2.
Fianchi
L
,
Pagano
L
,
Piciocchi
A
, et al
.
Characteristics and outcome of therapy-related myeloid neoplasms: Report from the Italian network on secondary leukemias
.
Am J Hematol.
2015
;
90
(
5
):
E80
-
E85
.
3.
de Moor
JS
,
Mariotto
AB
,
Parry
C
, et al
.
Cancer survivors in the United States: prevalence across the survivorship trajectory and implications for care
.
Cancer Epidemiol Biomarkers Prev.
2013
;
22
(
4
):
561
-
570
.
4.
McNerney
ME
,
Godley
LA
,
Le Beau
MM.
Therapy-related myeloid neoplasms: when genetics and environment collide
.
Nat Rev Cancer.
2017
;
17
(
9
):
513
-
527
.
5.
Gibson
CJ
,
Lindsley
RC
,
Tchekmedyian
V
, et al
.
Clonal hematopoiesis associated with adverse outcomes after autologous stem-cell transplantation for lymphoma
.
J Clin Oncol.
2017
;
35
(
14
):
1598
-
1605
.
6.
Takahashi
K
,
Wang
F
,
Kantarjian
H
, et al
.
Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study
.
Lancet Oncol.
2017
;
18
(
1
):
100
-
111
.
7.
Young
AL
,
Challen
GA
,
Birmann
BM
,
Druley
TE.
Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults
.
Nat Commun.
2016
;
7
:
12484
.
8.
Bowman
RL
,
Busque
L
,
Levine
RL.
Clonal hematopoiesis and evolution to hematopoietic malignancies
.
Cell Stem Cell.
2018
;
22
(
2
):
157
-
170
.
9.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med.
2014
;
371
(
26
):
2488
-
2498
.
10.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med.
2014
;
371
(
26
):
2477
-
2487
.
11.
Wong
TN
,
Miller
CA
,
Jotte
MRM
, et al
.
Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential
.
Nat Commun.
2018
;
9
(
1
):
455
.
12.
Luna-Fineman
S
,
Shannon
KM
,
Lange
BJ.
Childhood monosomy 7: epidemiology, biology, and mechanistic implications
.
Blood.
1995
;
85
(
8
):
1985
-
1999
.
13.
Bejar
R
,
Levine
R
,
Ebert
BL.
Unraveling the molecular pathophysiology of myelodysplastic syndromes
.
J Clin Oncol.
2011
;
29
(
5
):
504
-
515
.
14.
Pezeshki
A
,
Podder
S
,
Kamel
R
,
Corey
SJ.
Monosomy 7/del (7q) in inherited bone marrow failure syndromes: a systematic review
.
Pediatr Blood Cancer.
2017
;
64
(
12
):
e26714
.
15.
Luna-Fineman
S
,
Shannon
KM
,
Atwater
SK
, et al
.
Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients
.
Blood.
1999
;
93
(
2
):
459
-
466
.
16.
Takahashi
K
,
Wang
F
,
Kantarjian
H
, et al
.
Copy number alterations detected as clonal hematopoiesis of indeterminate potential
.
Blood Adv.
2017
;
1
(
15
):
1031
-
1036
.
17.
Jacobs
KB
,
Yeager
M
,
Zhou
W
, et al
.
Detectable clonal mosaicism and its relationship to aging and cancer
.
Nat Genet.
2012
;
44
(
6
):
651
-
658
.
18.
Laurie
CC
,
Laurie
CA
,
Rice
K
, et al
.
Detectable clonal mosaicism from birth to old age and its relationship to cancer
.
Nat Genet.
2012
;
44
(
6
):
642
-
650
.
19.
Dimitriou
M
,
Woll
PS
,
Mortera-Blanco
T
, et al
.
Perturbed hematopoietic stem and progenitor cell hierarchy in myelodysplastic syndromes patients with monosomy 7 as the sole cytogenetic abnormality
.
Oncotarget.
2016
;
7
(
45
):
72685
-
72698
.
20.
An
N
,
Khan
S
,
Imgruet
MK
, et al
.
Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS
.
Blood.
2018
;
131
(
24
):
2682
-
2697
.
21.
McNerney
ME
,
Brown
CD
,
Wang
X
, et al
.
CUX1 is a haploinsufficient tumor suppressor gene on chromosome 7 frequently inactivated in acute myeloid leukemia
.
Blood.
2013
;
121
(
6
):
975
-
983
.
22.
McNerney
ME
,
Brown
CD
,
Peterson
AL
, et al
.
The spectrum of somatic mutations in high-risk acute myeloid leukaemia with -7/del(7q)
.
Br J Haematol.
2014
;
166
(
4
):
550
-
556
.
23.
Zink
F
,
Stacey
SN
,
Norddahl
GL
, et al
.
Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly
.
Blood.
2017
;
130
(
6
):
742
-
752
.
24.
Yoshizato
T
,
Dumitriu
B
,
Hosokawa
K
, et al
.
Somatic mutations and clonal hematopoiesis in aplastic anemia
.
N Engl J Med.
2015
;
373
(
1
):
35
-
47
.
25.
Wong
CC
,
Martincorena
I
,
Rust
AG
, et al;
Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium
.
Inactivating CUX1 mutations promote tumorigenesis
.
Nat Genet.
2014
;
46
(
1
):
33
-
38
.
26.
Aly
M
,
Ramdzan
ZM
,
Nagata
Y
, et al
.
Distinct clinical and biological implications of CUX1 in myeloid neoplasms
.
Blood Adv.
2019
;
3
(
14
):
2164
-
2178
.
27.
Lindsley
RC
,
Saber
W
,
Mar
BG
, et al
.
Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation
.
N Engl J Med.
2017
;
376
(
6
):
536
-
547
.
28.
Seguin
L
,
Liot
C
,
Mzali
R
, et al
.
CUX1 and E2F1 regulate coordinated expression of the mitotic complex genes Ect2, MgcRacGAP, and MKLP1 in S phase
.
Mol Cell Biol.
2009
;
29
(
2
):
570
-
581
.
29.
Ramdzan
ZM
,
Nepveu
A.
CUX1, a haploinsufficient tumour suppressor gene overexpressed in advanced cancers
.
Nat Rev Cancer.
2014
;
14
(
10
):
673
-
682
.
30.
Li
Q
,
Lau
A
,
Morris
TJ
,
Guo
L
,
Fordyce
CB
,
Stanley
EF.
A syntaxin 1, Galpha(o), and N-type calcium channel complex at a presynaptic nerve terminal: analysis by quantitative immunocolocalization
.
J Neurosci.
2004
;
24
(
16
):
4070
-
4081
.
31.
Bolte
S
,
Cordelières
FP.
A guided tour into subcellular colocalization analysis in light microscopy
.
J Microsc.
2006
;
224
(
Pt 3
):
213
-
232
.
32.
Ramdzan
ZM
,
Ginjala
V
,
Pinder
JB
, et al
.
The DNA repair function of CUX1 contributes to radioresistance
.
Oncotarget.
2017
;
8
(
12
):
19021
-
19038
.
33.
Mariotti
LG
,
Pirovano
G
,
Savage
KI
, et al
.
Use of the γ-H2AX assay to investigate DNA repair dynamics following multiple radiation exposures
.
PLoS One.
2013
;
8
(
11
):
e79541
.
34.
Vadnais
C
,
Davoudi
S
,
Afshin
M
, et al
.
CUX1 transcription factor is required for optimal ATM/ATR-mediated responses to DNA damage
.
Nucleic Acids Res.
2012
;
40
(
10
):
4483
-
4495
.
35.
Arthur
RK
,
An
N
,
Khan
S
,
McNerney
ME.
The haploinsufficient tumor suppressor, CUX1, acts as an analog transcriptional regulator that controls target genes through distal enhancers that loop to target promoters
.
Nucleic Acids Res.
2017
;
45
(
11
):
6350
-
6361
.
36.
Nishio
H
,
Walsh
MJ.
CCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription
.
Proc Natl Acad Sci USA.
2004
;
101
(
31
):
11257
-
11262
.
37.
Shankar
SR
,
Bahirvani
AG
,
Rao
VK
,
Bharathy
N
,
Ow
JR
,
Taneja
R.
G9a, a multipotent regulator of gene expression
.
Epigenetics.
2013
;
8
(
1
):
16
-
22
.
38.
Chaturvedi
CP
,
Somasundaram
B
,
Singh
K
, et al
.
Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A
.
Proc Natl Acad Sci USA.
2012
;
109
(
46
):
18845
-
18850
.
39.
Watanabe
S
,
Iimori
M
,
Chan
DV
,
Hara
E
,
Kitao
H
,
Maehara
Y.
MDC1 methylation mediated by lysine methyltransferases EHMT1 and EHMT2 regulates active ATM accumulation flanking DNA damage sites
.
Sci Rep.
2018
;
8
(
1
):
10888
.
40.
Ginjala
V
,
Rodriguez-Colon
L
,
Ganguly
B
, et al
.
Protein-lysine methyltransferases G9a and GLP1 promote responses to DNA damage
.
Sci Rep.
2017
;
7
(
1
):
16613
.
41.
Yuan
Z-F
,
Sidoli
S
,
Marchione
DM
, et al
.
EpiProfile 2.0: a computational platform for processing Epi-proteomics mass spectrometry data
.
J Proteome Res.
2018
;
17
(
7
):
2533
-
2541
.
42.
Fnu
S
,
Williamson
EA
,
De Haro
LP
, et al
.
Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining
.
Proc Natl Acad Sci USA.
2011
;
108
(
2
):
540
-
545
.
43.
Ogiwara
H
,
Ui
A
,
Otsuka
A
, et al
.
Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors
.
Oncogene.
2011
;
30
(
18
):
2135
-
2146
.
44.
Yang
Q
,
Zhu
Q
,
Lu
X
, et al
.
G9a coordinates with the RPA complex to promote DNA damage repair and cell survival
.
Proc Natl Acad Sci USA.
2017
;
114
(
30
):
E6054
-
E6063
.
45.
Liu
F
,
Barsyte-Lovejoy
D
,
Li
F
, et al
.
Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP
.
J Med Chem.
2013
;
56
(
21
):
8931
-
8942
.
46.
Kondo
Y
,
Shen
L
,
Ahmed
S
, et al
.
Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells
.
PLoS One.
2008
;
3
(
4
):
e2037
.
47.
Wu
H
,
Chen
X
,
Xiong
J
, et al
.
Histone methyltransferase G9a contributes to H3K27 methylation in vivo
.
Cell Res.
2011
;
21
(
2
):
365
-
367
.
48.
Tachibana
M
,
Sugimoto
K
,
Fukushima
T
,
Shinkai
Y.
Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3
.
J Biol Chem.
2001
;
276
(
27
):
25309
-
25317
.
49.
Mozzetta
C
,
Pontis
J
,
Fritsch
L
, et al
.
The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing
.
Mol Cell.
2014
;
53
(
2
):
277
-
289
.
50.
Zhang
Y
,
Chang
J-F
,
Sun
J
, et al
.
Histone H3K27 methylation modulates the dynamics of FANCD2 on chromatin to facilitate NHEJ and genome stability
.
J Cell Sci.
2018
;
131
(
12
):
jcs215525
.
51.
Ayrapetov
MK
,
Gursoy-Yuzugullu
O
,
Xu
C
,
Xu
Y
,
Price
BD.
DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin
.
Proc Natl Acad Sci USA.
2014
;
111
(
25
):
9169
-
9174
.
52.
Xu
Y
,
Zhang
S
,
Lin
S
, et al
.
WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes
.
Nucleic Acids Res.
2017
;
45
(
D1
):
D264
-
D270
.
53.
Lou
Z
,
Minter-Dykhouse
K
,
Franco
S
, et al
.
MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals
.
Mol Cell.
2006
;
21
(
2
):
187
-
200
.
54.
Le Deley
MC
,
Leblanc
T
,
Shamsaldin
A
, et al;
Société Française d’Oncologie Pédiatrique
.
Risk of secondary leukemia after a solid tumor in childhood according to the dose of epipodophyllotoxins and anthracyclines: a case-control study by the Société Française d’Oncologie Pédiatrique
.
J Clin Oncol.
2003
;
21
(
6
):
1074
-
1081
.
55.
Lu
Y
,
Liu
Y
,
Yang
C.
Evaluating in vitro DNA damage using comet assay
.
J Vis Exp.
2017
;
128
(
128
):
e56450
.
56.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA.
2005
;
102
(
43
):
15545
-
15550
.
57.
Bolton
KL
,
Ptashkin
RN
,
Gao
T
, et al
.
Cancer therapy shapes the fitness landscape of clonal hematopoiesis
. Nat Genet. 2020;52(11):1219–1226.
58.
Lu
EP
,
McLellan
M
,
Ding
L
, et al
.
Caspase-9 is required for normal hematopoietic development and protection from alkylator-induced DNA damage in mice
.
Blood.
2014
;
124
(
26
):
3887
-
3895
.
59.
Fenske
TS
,
McMahon
C
,
Edwin
D
, et al
.
Identification of candidate alkylator-induced cancer susceptibility genes by whole genome scanning in mice
.
Cancer Res.
2006
;
66
(
10
):
5029
-
5038
.
60.
Quwailid
MM
,
Hugill
A
,
Dear
N
, et al
.
A gene-driven ENU-based approach to generating an allelic series in any gene
.
Mamm Genome.
2004
;
15
(
8
):
585
-
591
.
61.
Wong
TN
,
Ramsingh
G
,
Young
AL
, et al
.
Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia
.
Nature.
2015
;
518
(
7540
):
552
-
555
.
62.
Gillis
NK
,
Ball
M
,
Zhang
Q
, et al
.
Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study
.
Lancet Oncol.
2017
;
18
(
1
):
112
-
121
.
63.
Kogan
SC
,
Ward
JM
,
Anver
MR
, et al;
Hematopathology subcommittee of the Mouse Models of Human Cancers Consortium
.
Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice
.
Blood.
2002
;
100
(
1
):
238
-
245
.
64.
Lee
WY
,
Weinberg
OK
,
Pinkus
GS.
GATA1 is a sensitive and specific nuclear marker for erythroid and megakaryocytic lineages
.
Am J Clin Pathol.
2017
;
147
(
4
):
420
-
426
.
65.
Liu
W
,
Hasserjian
RP
,
Hu
Y
, et al
.
Pure erythroid leukemia: a reassessment of the entity using the 2008 World Health Organization classification
.
Mod Pathol.
2011
;
24
(
3
):
375
-
383
.
66.
Wong
E
,
Ling
V
,
Westerman
D
,
Morgan
S
,
Juneja
S.
How unique is pure erythroid leukaemia? A retrospective analysis of seven cases and review of the literature
.
J Clin Pathol.
2015
;
68
(
4
):
301
-
305
.
67.
Agarwal
P
,
Jackson
SP.
G9a inhibition potentiates the anti-tumour activity of DNA double-strand break inducing agents by impairing DNA repair independent of p53 status
.
Cancer Lett.
2016
;
380
(
2
):
467
-
475
.
68.
Hosono
N
,
Makishima
H
,
Jerez
A
, et al
.
Recurrent genetic defects on chromosome 7q in myeloid neoplasms
.
Leukemia.
2014
;
28
(
6
):
1348
-
1351
.
69.
Shimizu
T
,
Kubovcakova
L
,
Nienhold
R
, et al
.
Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis
.
J Exp Med.
2016
;
213
(
8
):
1479
-
1496
.
70.
Churpek
JE
,
Marquez
R
,
Neistadt
B
, et al
.
Inherited mutations in cancer susceptibility genes are common among survivors of breast cancer who develop therapy-related leukemia
.
Cancer.
2016
;
122
(
2
):
304
-
311
.
71.
Schulz
E
,
Valentin
A
,
Ulz
P
, et al
.
Germline mutations in the DNA damage response genes BRCA1, BRCA2, BARD1 and TP53 in patients with therapy related myeloid neoplasms
.
J Med Genet.
2012
;
49
(
7
):
422
-
428
.
72.
Bhatia
S.
Genetic variation as a modifier of association between therapeutic exposure and subsequent malignant neoplasms in cancer survivors
.
Cancer.
2015
;
121
(
5
):
648
-
663
.
73.
Voso
MT
,
Fabiani
E
,
Zang
Z
, et al
.
Fanconi anemia gene variants in therapy-related myeloid neoplasms
[letter].
Blood Cancer J.
2015
;
5
(
7
):
e323
.
74.
Marusyk
A
,
Porter
CC
,
Zaberezhnyy
V
,
DeGregori
J.
Irradiation selects for p53-deficient hematopoietic progenitors
.
PLoS Biol.
2010
;
8
(
3
):
e1000324
.
75.
Prokocimer
M
,
Molchadsky
A
,
Rotter
V.
Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy
.
Blood.
2017
;
130
(
6
):
699
-
712
.
76.
Stoddart
A
,
Fernald
AA
,
Wang
J
, et al
.
Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice
.
Blood.
2014
;
123
(
7
):
1069
-
1078
.
77.
Mitsumori
K
,
Onodera
H
,
Shimo
T
, et al
.
Rapid induction of uterine tumors with p53 point mutations in heterozygous p53-deficient CBA mice given a single intraperitoneal administration of N-ethyl-N-nitrosourea
.
Carcinogenesis.
2000
;
21
(
5
):
1039
-
1042
.
78.
Harvey
M
,
McArthur
MJ
,
Montgomery
CA
Jr
,
Butel
JS
,
Bradley
A
,
Donehower
LA.
Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice
.
Nat Genet.
1993
;
5
(
3
):
225
-
229
.
79.
van de Haar
J
,
Canisius
S
,
Yu
MK
,
Voest
EE
,
Wessels
LFA
,
Ideker
T.
Identifying epistasis in cancer genomes: a delicate affair
.
Cell.
2019
;
177
(
6
):
1375
-
1383
.
80.
Park
Y
,
Gerson
SL.
DNA repair defects in stem cell function and aging
.
Annu Rev Med.
2005
;
56
:
495
-
508
.
81.
Rossi
DJ
,
Bryder
D
,
Seita
J
,
Nussenzweig
A
,
Hoeijmakers
J
,
Weissman
IL.
Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age
.
Nature.
2007
;
447
(
7145
):
725
-
729
.
82.
Sedelnikova
OA
,
Horikawa
I
,
Zimonjic
DB
,
Popescu
NC
,
Bonner
WM
,
Barrett
JC.
Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks
.
Nat Cell Biol.
2004
;
6
(
2
):
168
-
170
.
83.
Popp
HD
,
Naumann
N
,
Brendel
S
, et al
.
Increase of DNA damage and alteration of the DNA damage response in myelodysplastic syndromes and acute myeloid leukemias
.
Leuk Res.
2017
;
57
:
112
-
118
.
84.
Sun
D
,
Luo
M
,
Jeong
M
, et al
.
Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal
.
Cell Stem Cell.
2014
;
14
(
5
):
673
-
688
.
85.
Adelman
ER
,
Huang
HT
,
Roisman
A
, et al
.
Aging human hematopoietic stem cells manifest profound epigenetic reprogramming of enhancers that may predispose to leukemia
.
Cancer Discov.
2019
;
9
(
8
):
1080
-
1101
.
86.
Appelbaum
FR
,
Gundacker
H
,
Head
DR
, et al
.
Age and acute myeloid leukemia
.
Blood.
2006
;
107
(
9
):
3481
-
3485
.
87.
Edgar
R
,
Domrachev
M
,
Lash
AE.
Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
.
Nucleic Acids Res.
2002
;
30
(
1
):
207
-
210
.
88.
AACR Project GENIE Consortium
;
Sweeney
SM
,
Cerami
E
,
Baras
A
, et al
.
AACR project GENIE: powering precision medicine through an international consortium
.
Cancer Discov.
2017
;
7
(
8
):
818
-
831
. >Human Tissue Resource Center (RRID:SCR_019199),
You do not currently have access to this content.

Sign in via your Institution

Sign In