Key Points

  • 14q32 rearrangements, activating BCL11B, provide a novel biomarker for a new entity among immature acute leukemias.

Abstract

Acute leukemias (ALs) of ambiguous lineage are a heterogeneous group of high-risk leukemias characterized by coexpression of myeloid and lymphoid markers. In this study, we identified a distinct subgroup of immature acute leukemias characterized by a broadly variable phenotype, covering acute myeloid leukemia (AML, M0 or M1), T/myeloid mixed-phenotype acute leukemia (T/M MPAL), and early T-cell precursor acute lymphoblastic leukemia (ETP-ALL). Rearrangements at 14q32/BCL11B are the cytogenetic hallmark of this entity. In our screening of 915 hematological malignancies, there were 202 AML and 333 T-cell acute lymphoblastic leukemias (T-ALL: 58, ETP; 178, non-ETP; 8, T/M MPAL; 89, not otherwise specified). We identified 20 cases of immature leukemias (4% of AML and 3.6% of T-ALL), harboring 4 types of 14q32/BCL11B translocations: t(2,14)(q22.3;q32) (n = 7), t(6;14)(q25.3;q32) (n = 9), t(7;14)(q21.2;q32) (n = 2), and t(8;14)(q24.2;q32) (n = 2). The t(2;14) produced a ZEB2-BCL11B fusion transcript, whereas the other 3 rearrangements displaced transcriptionally active enhancer sequences close to BCL11B without producing fusion genes. All translocations resulted in the activation of BCL11B, a regulator of T-cell differentiation associated with transcriptional corepressor complexes in mammalian cells. The expression of BCL11B behaved as a disease biomarker that was present at diagnosis, but not in remission. Deregulation of BCL11B co-occurred with variants at FLT3 and at epigenetic modulators, most frequently the DNMT3A, TET2, and/or WT1 genes. Transcriptome analysis identified a specific expression signature, with significant downregulation of BCL11B targets, and clearly separating BCL11B AL from AML, T-ALL, and ETP-ALL. Remarkably, an ex vivo drug-sensitivity profile identified a panel of compounds with effective antileukemic activity.

REFERENCES

1.
Swerdlow
SH
,
Campo
E
,
Harris
NL
, et al
.
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues.
4th ed., revised.
Lyon, France
:
World Health Organization
;
2017
.
2.
Alexander
TB
,
Gu
Z
,
Iacobucci
I
, et al
.
The genetic basis and cell of origin of mixed phenotype acute leukaemia
.
Nature.
2018
;
562
(
7727
):
373
-
379
.
3.
Takahashi
K
,
Wang
F
,
Morita
K
, et al
.
Integrative genomic analysis of adult mixed phenotype acute leukemia delineates lineage associated molecular subtypes
.
Nat Commun.
2018
;
9
(
1
):
2670
.
4.
Patrick
K
,
Wade
R
,
Goulden
N
, et al
.
Outcome for children and young people with Early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003
.
Br J Haematol.
2014
;
166
(
3
):
421
-
424
.
5.
Conter
V
,
Valsecchi
MG
,
Buldini
B
, et al
.
Early T-cell precursor acute lymphoblastic leukaemia in children treated in AIEOP centres with AIEOP-BFM protocols: a retrospective analysis
.
Lancet Haematol.
2016
;
3
(
2
):
e80
-
e86
.
6.
Coustan-Smith
E
,
Mullighan
CG
,
Onciu
M
, et al
.
Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia
.
Lancet Oncol.
2009
;
10
(
2
):
147
-
156
.
7.
Zhang
J
,
Ding
L
,
Holmfeldt
L
, et al
.
The genetic basis of early T-cell precursor acute lymphoblastic leukaemia
.
Nature.
2012
;
481
(
7380
):
157
-
163
.
8.
Cismasiu
VB
,
Adamo
K
,
Gecewicz
J
,
Duque
J
,
Lin
Q
,
Avram
D.
BCL11B functionally associates with the NuRD complex in T lymphocytes to repress targeted promoter
.
Oncogene.
2005
;
24
(
45
):
6753
-
6764
.
9.
Dubuissez
M
,
Loison
I
,
Paget
S
, et al
.
Protein kinase C–mediated phosphorylation of BCL11B at serine 2 negatively regulates Its interaction with NuRD complexes during CD4+ T-cell activation
.
Mol Cell Biol.
2016
;
36
(
13
):
1881
-
1898
.
10.
Liu
P
,
Li
P
,
Burke
S.
Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity
.
Immunol Rev.
2010
;
238
(
1
):
138
-
149
.
11.
Rothenberg
EV.
Programming for T-lymphocyte fates: modularity and mechanisms
.
Genes Dev.
2019
;
33
(
17-18
):
1117
-
1135
.
12.
Ley
TJ
,
Miller
C
,
Ding
L
, et al
;
Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med.
2013
;
368
(
22
):
2059
-
2074
.
13.
Liu
Y
,
Easton
J
,
Shao
Y
, et al
.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia
.
Nat Genet.
2017
;
49
(
8
):
1211
-
1218
.
14.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov.
2012
;
2
(
5
):
401
-
404
.
15.
Gao
J
,
Aksoy
BA
,
Dogrusoz
U
, et al
.
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
.
Sci Signal.
2013
;
6
(
269
):
pl1
.
16.
Grossman
RL
,
Heath
AP
,
Ferretti
V
, et al
.
Toward a Shared Vision for Cancer Genomic Data
.
N Engl J Med.
2016
;
375
(
12
):
1109
-
1112
.
17.
Frismantas
V
,
Dobay
MP
,
Rinaldi
A
, et al
.
Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia
.
Blood.
2017
;
129
(
11
):
e26
-
e37
.
18.
Hnisz
D
,
Abraham
BJ
,
Lee
TI
, et al
.
Super-enhancers in the control of cell identity and disease
.
Cell.
2013
;
155
(
4
):
934
-
947
.
19.
Wang
W
,
Beird
H
,
Kroll
CJ
, et al
.
T(6;14)(q25;q32) involves BCL11B and is highly associated with mixed-phenotype acute leukemia, T/myeloid
.
Leukemia.
2020
;
34
(
9
):
2509
-
2512
.
20.
La Starza
R
,
Barba
G
,
Demeyer
S
, et al
.
Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia
.
Haematologica.
2016
;
101
(
8
):
951
-
958
.
21.
Rothenberg
EV
,
Hosokawa
H
,
Ungerbäck
J.
Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development
.
Front Immunol.
2019
;
10
:
228
.
22.
Goossens
S
,
Radaelli
E
,
Blanchet
O
, et al
.
ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling
.
Nat Commun.
2015
;
6
(
1
):
5794
.
23.
Li
J
,
Riedt
T
,
Goossens
S
, et al
.
The EMT transcription factor Zeb2 controls adult murine hematopoietic differentiation by regulating cytokine signaling
.
Blood.
2017
;
129
(
4
):
460
-
472
.
24.
Baker
SJ
,
Rane
SG
,
Reddy
EP.
Hematopoietic cytokine receptor signaling
.
Oncogene.
2007
;
26
(
47
):
6724
-
6737
.
25.
Hammarén
HM
,
Virtanen
AT
,
Raivola
J
,
Silvennoinen
O.
The regulation of JAKs in cytokine signaling and its breakdown in disease
.
Cytokine.
2019
;
118
:
48
-
63
.
26.
Di Santo
JP.
Immunology. A guardian of T cell fate
.
Science.
2010
;
329
(
5987
):
44
-
45
.
27.
Nagel
S
,
Kaufmann
M
,
Drexler
HG
,
MacLeod
RAF.
The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2)
.
Cancer Res.
2003
;
63
(
17
):
5329
-
5334
.
28.
Su
XY
,
Busson
M
,
Della Valle
V
, et al
.
Various types of rearrangements target TLX3 locus in T-cell acute lymphoblastic leukemia
.
Genes Chromosomes Cancer.
2004
;
41
(
3
):
243
-
249
.
29.
Su
X
,
Drabkin
H
,
Clappier
E
, et al
.
Transforming potential of the T-cell acute lymphoblastic leukemia-associated homeobox genes HOXA13, TLX1, and TLX3
.
Genes Chromosomes Cancer.
2006
;
45
(
9
):
846
-
855
.
30.
Nagel
S
,
Scherr
M
,
Kel
A
, et al
.
Activation of TLX3 and NKX2-5 in t(5;14)(q35;q32) T-cell acute lymphoblastic leukemia by remote 3'-BCL11B enhancers and coregulation by PU.1 and HMGA1
.
Cancer Res.
2007
;
67
(
4
):
1461
-
1471
.
31.
De Keersmaecker
K
,
Real
PJ
,
Gatta
GD
, et al
.
The TLX1 oncogene drives aneuploidy in T cell transformation
.
Nat Med.
2010
;
16
(
11
):
1321
-
1327
.
32.
Kadoch
C
,
Hargreaves
DC
,
Hodges
C
, et al
.
Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy
.
Nat Genet.
2013
;
45
(
6
):
592
-
601
.
33.
Oshiro
A
,
Tagawa
H
,
Ohshima
K
, et al
.
Identification of subtype-specific genomic alterations in aggressive adult T-cell leukemia/lymphoma
.
Blood.
2006
;
107
(
11
):
4500
-
4507
.
34.
Przybylski
GK
,
Dik
WA
,
Wanzeck
J
, et al
.
Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL
.
Leukemia.
2005
;
19
(
2
):
201
-
208
.
35.
Abbas
S
,
Sanders
MA
,
Zeilemaker
A
, et al
.
Integrated genome-wide genotyping and gene expression profiling reveals BCL11B as a putative oncogene in acute myeloid leukemia with 14q32 aberrations
.
Haematologica.
2014
;
99
(
5
):
848
-
857
.
36.
Lovén
J
,
Hoke
HA
,
Lin
CY
, et al
.
Selective inhibition of tumor oncogenes by disruption of super-enhancers
.
Cell.
2013
;
153
(
2
):
320
-
334
.
37.
Bahr
C
,
von Paleske
L
,
Uslu
VV
, et al
.
A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies [published correction appears in Nature. 2018;558(7711):E4]
.
Nature.
2018
;
553
(
7689
):
515
-
520
.
38.
Lamouille
S
,
Xu
J
,
Derynck
R.
Molecular mechanisms of epithelial-mesenchymal transition
.
Nat Rev Mol Cell Biol.
2014
;
15
(
3
):
178
-
196
.
39.
Verstappen
G
,
van Grunsven
LA
,
Michiels
C
, et al
.
Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex
.
Hum Mol Genet.
2008
;
17
(
8
):
1175
-
1183
.
40.
Si
W
,
Huang
W
,
Zheng
Y
, et al
.
Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis
.
Cancer Cell.
2015
;
27
(
6
):
822
-
836
.
41.
Avram
D
,
Fields
A
,
Pretty On Top
K
,
Nevrivy
DJ
,
Ishmael
JE
,
Leid
M.
Isolation of a novel family of C(2)H(2) zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors
.
J Biol Chem.
2000
;
275
(
14
):
10315
-
10322
.
42.
La Starza
R
,
Pierini
V
,
Pierini
T
, et al
.
Design of a comprehensive fluorescence in situ hybridization assay for genetic classification of T-cell acute lymphoblastic leukemia
.
J Mol Diagn.
2020
;
22
(
5
):
629
-
639
.
43.
Homminga
I
,
Pieters
R
,
Langerak
AW
, et al
.
Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia
.
Cancer Cell.
2011
;
19
(
4
):
484
-
497
.
44.
Pundhir
S
,
Bratt Lauridsen
FK
,
Schuster
MB
, et al
.
Enhancer and transcription factor dynamics during myeloid differentiation reveal an early differentiation block in Cebpa null progenitors
.
Cell Rep.
2018
;
23
(
9
):
2744
-
2757
.
45.
Seki
M
,
Kimura
S
,
Isobe
T
, et al
.
Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia
.
Nat Genet.
2017
;
49
(
8
):
1274
-
1281
.
46.
Peirs
S
,
Van der Meulen
J
,
Van de Walle
I
, et al
.
Epigenetics in T-cell acute lymphoblastic leukemia
.
Immunol Rev.
2015
;
263
(
1
):
50
-
67
.
47.
Pronier
E
,
Bowman
RL
,
Ahn
J
, et al
.
Genetic and epigenetic evolution as a contributor to WT1-mutant leukemogenesis
.
Blood.
2018
;
132
(
12
):
1265
-
1278
.
48.
Shlush
LI
,
Zandi
S
,
Mitchell
A
, et al
;
HALT Pan-Leukemia Gene Panel Consortium. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia [published correction appears in Nature. 2014;508(7496):420]
.
Nature.
2014
;
506
(
7488
):
328
-
333
.
49.
Gaidzik
VI
,
Weber
D
,
Paschka
P
, et al
;
German-Austrian Acute Myeloid Leukemia Study Group (AMLSG). DNMT3A mutant transcript levels persist in remission and do not predict outcome in patients with acute myeloid leukemia
.
Leukemia.
2018
;
32
(
1
):
30
-
37
.
50.
Bond
J
,
Touzart
A
,
Leprêtre
S
, et al
.
DNMT3A mutation is associated with increased age and adverse outcome in adult T-cell acute lymphoblastic leukemia
.
Haematologica.
2019
;
104
(
8
):
1617
-
1625
.
51.
Gilliland
DG
,
Griffin
JD.
The roles of FLT3 in hematopoiesis and leukemia
.
Blood.
2002
;
100
(
5
):
1532
-
1542
.
52.
Yang
L
,
Rodriguez
B
,
Mayle
A
, et al
.
DNMT3A Loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias [published correction appears in Cancer Cell. 2016;30(2):363–365]
.
Cancer Cell.
2016
;
29
(
6
):
922
-
934
.
You do not currently have access to this content.

Sign in via your Institution

Sign In