• B-ALL progressing after CD19 CAR T-cell therapy carries poor prognosis and remains an unmet clinical need.

  • Blinatumomab, inotuzumab, and CAR T-cell retreatment can induce CR after post–CAR T progression, but remission duration and survival are limited.

CD19-targeted chimeric antigen receptor (CAR) T-cell therapy has become a breakthrough treatment of patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, despite the high initial response rate, the majority of adult patients with B-ALL progress after CD19 CAR T-cell therapy. Data on the natural history, management, and outcome of adult B-ALL progressing after CD19 CAR T cells have not been described in detail. Herein, we report comprehensive data of 38 adult patients with B-ALL who progressed after CD19 CAR T therapy at our institution. The median time to progression after CAR T-cell therapy was 5.5 months. Median survival after post–CAR T progression was 7.5 months. A high disease burden at the time of CAR T-cell infusion was significantly associated with risk of post–CAR T progression. Thirty patients (79%) received salvage treatment of post–CAR T disease progression, and 13 patients (43%) achieved complete remission (CR), but remission duration was short. Notably, 7 (58.3%) of 12 patients achieved CR after blinatumomab and/or inotuzumab administered following post–CAR T failure. Multivariate analysis revealed that a longer remission duration from CAR T cells was associated with superior survival after progression following CAR T-cell therapy. In summary, overall prognosis of adult B-ALL patients progressing after CD19 CAR T cells was poor, although a subset of patients achieved sustained remissions to salvage treatments, including blinatumomab, inotuzumab, and reinfusion of CAR T cells. Novel therapeutic strategies are needed to reduce risk of progression after CAR T-cell therapy and improve outcomes of these patients.

1.
Park
JH
,
Rivière
I
,
Gonen
M
, et al
.
Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
449
-
459
.
2.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest
.
2016
;
126
(
6
):
2123
-
2138
.
3.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
4.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
5.
Li
S
,
Zhang
J
,
Wang
M
, et al
.
Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB
.
Br J Haematol
.
2018
;
181
(
3
):
360
-
371
.
6.
Cao
J
,
Wang
G
,
Cheng
H
, et al
.
Potent anti-leukemia activities of humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia
.
Am J Hematol
.
2018
;
93
(
7
):
851
-
858
.
7.
Curran
KJ
,
Margossian
SP
,
Kernan
NA
, et al
.
Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL
[published correction appears in Blood. 2020;136(11):1374].
Blood
.
2019
;
134
(
26
):
2361
-
2368
.
8.
Frey
NV
,
Shaw
PA
,
Hexner
EO
, et al
.
Optimizing chimeric antigen receptor T-cell therapy for adults with acute lymphoblastic leukemia
.
J Clin Oncol
.
2020
;
38
(
5
):
415
-
422
.
9.
Chow
VA
,
Gopal
AK
,
Maloney
DG
, et al
.
Outcomes of patients with large B-cell lymphomas and progressive disease following CD19-specific CAR T-cell therapy
.
Am J Hematol
.
2019
;
94
(
8
):
E209
-
E213
.
10.
Shadman
M
,
Gauthier
J
,
Khajavian
S
, et al
.
Relapsed or refractory CLL after CD19-specific CAR-T therapy: treatment patterns and clinical outcomes
.
Blood
.
2019
;
134
(
suppl 1
):
4294
.
11.
Spiegel
JY
,
Dahiya
S
,
Jain
MD
, et al
.
Outcomes of patients with large B-cell lymphoma progressing after axicabtagene ciloleucel
.
Blood
.
2021
;
137
(
13
):
1832
-
1835
.
12.
Brentjens
RJ
,
Rivière
I
,
Park
JH
, et al
.
Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias
.
Blood
.
2011
;
118
(
18
):
4817
-
4828
.
13.
Hollyman
D
,
Stefanski
J
,
Przybylowski
M
, et al
.
Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy
.
J Immunother
.
2009
;
32
(
2
):
169
-
180
.
14.
Goldstone
AH
,
Richards
SM
,
Lazarus
HM
, et al
.
In adults with standard-risk acute lymphoblastic leukemia, the greatest benefit is achieved from a matched sibling allogeneic transplantation in first complete remission, and an autologous transplantation is less effective than conventional consolidation/maintenance chemotherapy in all patients: final results of the International ALL Trial (MRC UKALL XII/ECOG E2993)
.
Blood
.
2008
;
111
(
4
):
1827
-
1833
.
15.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
16.
Byrne
M
,
Oluwole
OO
,
Savani
B
,
Majhail
NS
,
Hill
BT
,
Locke
FL
.
Understanding and managing large B cell lymphoma relapses after chimeric antigen receptor T cell therapy
.
Biol Blood Marrow Transplant
.
2019
;
25
(
11
):
e344
-
e351
.
17.
Pillai
V
,
Muralidharan
K
,
Meng
W
, et al
.
CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy
.
Blood Adv
.
2019
;
3
(
22
):
3539
-
3549
.
18.
Shah
BD
,
Bishop
MR
,
Oluwole
OO
, et al
.
End of phase I results of ZUMA-3, a phase 1/2 study of KTE-X19, anti-CD19 chimeric antigen receptor (CAR) T cell therapy, in adult patients (pts) with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL)
.
J Clin Oncol
.
2019
;
37
(
suppl 15
):
7006
.
19.
Thapa
B
,
Caimi
PF
,
Ardeshna
KM
, et al
.
CD19 antibody-drug conjugate therapy in DLBCL does not preclude subsequent responses to CD19-directed CAR T-cell therapy
[published correction appears in Blood Adv. 2020;4(19):4606].
Blood Adv
.
2020
;
4
(
16
):
3850
-
3852
.
20.
Gardner
RA
,
Ceppi
F
,
Rivers
J
, et al
.
Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy
.
Blood
.
2019
;
134
(
24
):
2149
-
2158
.
21.
Liu
S
,
Deng
B
,
Yin
Z
, et al
.
Corticosteroids do not influence the efficacy and kinetics of CAR-T cells for B-cell acute lymphoblastic leukemia
.
Blood Cancer J
.
2020
;
10
(
2
):
15
.
22.
Topp
M
,
Van Meerten
T
,
Houot
R
, et al
.
Earlier steroid use with axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory large B cell lymphoma
.
Blood
.
2019
;
134
(
suppl 1
):
243
.
23.
Schuster
SJ
,
Bartlett
NL
,
Assouline
S
, et al
.
Mosunetuzumab induces complete remissions in poor prognosis non-Hodgkin lymphoma patients, including those who are resistant to or relapsing after chimeric antigen receptor T-cell (CAR-T) therapies, and is active in treatment through multiple lines
.
Blood
.
2019
;
134
(
suppl 1
):
6
.
24.
Chow
VA
,
Gopal
AK
,
Gauthier
J
, et al
.
Axicabtagene ciloleucel for relapsed or refractory lymphoma after prior treatment with a different CD19-directed CAR T-cell therapy
.
Blood Adv
.
2020
;
4
(
19
):
4869
-
4872
.
25.
Gauthier
J
,
Bezerra
ED
,
Hirayama
AV
, et al
.
Factors associated with outcomes after a second CD19-targeted CAR T-cell infusion for refractory B-cell malignancies
.
Blood
.
2021
;
137
(
3
):
323
-
335
.
26.
Singh
N
,
Perazzelli
J
,
Grupp
SA
,
Barrett
DM
.
Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies
.
Sci Transl Med
.
2016
;
8
(
320
):
320ra3
.
27.
Finney
OC
,
Brakke
HM
,
Rawlings-Rhea
S
, et al
.
CD19 CAR T cell product and disease attributes predict leukemia remission durability
.
J Clin Invest
.
2019
;
129
(
5
):
2123
-
2132
.
28.
Locke
FL
,
Rossi
JM
,
Neelapu
SS
, et al
.
Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
19
):
4898
-
4911
.
29.
Deng
Q
,
Han
G
,
Puebla-Osorio
N
, et al
.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
.
Nat Med
.
2020
;
26
(
12
):
1878
-
1887
.
30.
Garfall
AL
,
Dancy
EK
,
Cohen
AD
, et al
.
T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma
.
Blood Adv
.
2019
;
3
(
19
):
2812
-
2815
.
31.
Park
JH
,
Riviere
I
,
Sikder
DS
, et al
.
A Phase I study of CD19-targeted 19(T2)28z1xx CAR T cells in adult patients with relapsed or refractory B-cell malignancies
.
Blood
.
2020
;
136
(
suppl 1
):
43
-
44
.
32.
Rafiq
S
,
Yeku
OO
,
Jackson
HJ
, et al
.
Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo
.
Nat Biotechnol
.
2018
;
36
(
9
):
847
-
856
.
33.
Avanzi
MP
,
Yeku
O
,
Li
X
, et al
.
Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system
.
Cell Rep
.
2018
;
23
(
7
):
2130
-
2141
.
You do not currently have access to this content.

Sign in via your Institution

Sign In