• Sca-1CD51+ microenvironment cells are predominantly located in trabecular bone lining regions and near the growth plate in mice.

  • Cell surface expression of PDGFRα and/or PDGFRβ identify 4 populations of Sca-1CD51+ cells with distinct functions.

Hematopoiesis is extrinsically controlled by cells of the bone marrow microenvironment, including skeletal lineage cells. The identification and subsequent studies of distinct subpopulations of maturing skeletal cells is currently limited because of a lack of methods to isolate these cells. We found that murine LinCD31Sca-1CD51+ cells can be divided into 4 subpopulations by using flow cytometry based on their expression of the platelet-derived growth factor receptors ⍺ and β (PDGFR⍺ and PDGFRβ). The use of different skeletal lineage reporters confirmed the skeletal origin of the 4 populations. Multiplex immunohistochemistry studies revealed that all 4 populations were localized near the growth plate and trabecular bone and were rarely found near cortical bone regions or in central bone marrow. Functional studies revealed differences in their abundance, colony-forming unit–fibroblast capacity, and potential to differentiate into mineralized osteoblasts or adipocytes in vitro. Furthermore, the 4 populations had distinct gene expression profiles and differential cell surface expression of leptin receptor (LEPR) and vascular cell adhesion molecule 1 (VCAM-1). Interestingly, we discovered that 1 of these 4 different skeletal populations showed the highest expression of genes involved in the extrinsic regulation of B lymphopoiesis. This cell population varied in abundance between distinct hematopoietically active skeletal sites, and significant differences in the proportions of B-lymphocyte precursors were also observed in these distinct skeletal sites. This cell population also supported pre-B lymphopoiesis in culture. Our method of isolating 4 distinct maturing skeletal populations will help elucidate the roles of distinct skeletal niche cells in regulating hematopoiesis and bone.

1.
Dzierzak
E
,
Speck
NA
.
Of lineage and legacy: the development of mammalian hematopoietic stem cells
.
Nat Immunol
.
2008
;
9
(
2
):
129
-
136
.
2.
Severe
N
,
Karabacak
NM
,
Gustafsson
K
, et al
.
Stress-induced changes in bone marrow stromal cell populations revealed through single-cell protein expression mapping
.
Cell Stem Cell
.
2019
;
25
(
4
):
570
-
583.e7
.
3.
Chan
CK
,
Seo
EY
,
Chen
JY
, et al
.
Identification and specification of the mouse skeletal stem cell
.
Cell
.
2015
;
160
(
1-2
):
285
-
298
.
4.
Tikhonova
AN
,
Dolgalev
I
,
Hu
H
, et al
.
The bone marrow microenvironment at single-cell resolution
.
Nature
.
2019
;
569
(
7755
):
222
-
228
.
5.
Worthley
DL
,
Churchill
M
,
Compton
JT
, et al
.
Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential
.
Cell
.
2015
;
160
(
1-2
):
269
-
284
.
6.
Zhou
BO
,
Yue
R
,
Murphy
MM
,
Peyer
JG
,
Morrison
SJ
.
Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow
.
Cell Stem Cell
.
2014
;
15
(
2
):
154
-
168
.
7.
Morikawa
S
,
Mabuchi
Y
,
Kubota
Y
, et al
.
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
.
J Exp Med
.
2009
;
206
(
11
):
2483
-
2496
.
8.
Park
D
,
Spencer
JA
,
Koh
BI
, et al
.
Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration
.
Cell Stem Cell
.
2012
;
10
(
3
):
259
-
272
.
9.
Houlihan
DD
,
Mabuchi
Y
,
Morikawa
S
, et al
.
Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α
.
Nat Protoc
.
2012
;
7
(
12
):
2103
-
2111
.
10.
Suire
C
,
Brouard
N
,
Hirschi
K
,
Simmons
PJ
.
Isolation of the stromal-vascular fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal progenitors
.
Blood
.
2012
;
119
(
11
):
e86
-
e95
.
11.
Chan
CK
,
Lindau
P
,
Jiang
W
, et al
.
Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
31
):
12643
-
12648
.
12.
Pinho
S
,
Lacombe
J
,
Hanoun
M
, et al
.
PDGFRα and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion
.
J Exp Med
.
2013
;
210
(
7
):
1351
-
1367
.
13.
Omatsu
Y
,
Sugiyama
T
,
Kohara
H
, et al
.
The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche
.
Immunity
.
2010
;
33
(
3
):
387
-
399
.
14.
Méndez-Ferrer
S
,
Michurina
TV
,
Ferraro
F
, et al
.
Mesenchymal and haematopoietic stem cells form a unique bone marrow niche
.
Nature
.
2010
;
466
(
7308
):
829
-
834
.
15.
Ding
L
,
Morrison
SJ
.
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
.
Nature
.
2013
;
495
(
7440
):
231
-
235
.
16.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain haematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
17.
Debnath
S
,
Yallowitz
AR
,
McCormick
J
, et al
.
Discovery of a periosteal stem cell mediating intramembranous bone formation
.
Nature
.
2018
;
562
(
7725
):
133
-
139
.
18.
Greenbaum
A
,
Hsu
YM
,
Day
RB
, et al
.
CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance
.
Nature
.
2013
;
495
(
7440
):
227
-
230
.
19.
Calvi
LM
,
Adams
GB
,
Weibrecht
KW
, et al
.
Osteoblastic cells regulate the haematopoietic stem cell niche
.
Nature
.
2003
;
425
(
6960
):
841
-
846
.
20.
Zhang
J
,
Niu
C
,
Ye
L
, et al
.
Identification of the haematopoietic stem cell niche and control of the niche size
.
Nature
.
2003
;
425
(
6960
):
836
-
841
.
21.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
22.
Egawa
T
,
Kawabata
K
,
Kawamoto
H
, et al
.
The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor
.
Immunity
.
2001
;
15
(
2
):
323
-
334
.
23.
Baryawno
N
,
Przybylski
D
,
Kowalczyk
MS
, et al
.
A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia
.
Cell
.
2019
;
177
(
7
):
1915
-
1932.e16
.
24.
Visnjic
D
,
Kalajzic
Z
,
Rowe
DW
,
Katavic
V
,
Lorenzo
J
,
Aguila
HL
.
Hematopoiesis is severely altered in mice with an induced osteoblast deficiency
.
Blood
.
2004
;
103
(
9
):
3258
-
3264
.
25.
Zhu
J
,
Garrett
R
,
Jung
Y
, et al
.
Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells
.
Blood
.
2007
;
109
(
9
):
3706
-
3712
.
26.
Wu
JY
,
Purton
LE
,
Rodda
SJ
, et al
.
Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways
.
Proc Natl Acad Sci U S A
.
2008
;
105
(
44
):
16976
-
16981
.
27.
Green
AC
,
Rudolph-Stringer
V
,
Chantry
AD
,
Wu
JY
,
Purton
LE
.
Mesenchymal lineage cells and their importance in B lymphocyte niches
.
Bone
.
2019
;
119
:
42
-
56
.
28.
Lundberg
P
,
Allison
SJ
,
Lee
NJ
, et al
.
Greater bone formation of Y2 knockout mice is associated with increased osteoprogenitor numbers and altered Y1 receptor expression
.
J Biol Chem
.
2007
;
282
(
26
):
19082
-
19091
.
29.
Semerad
CL
,
Christopher
MJ
,
Liu
F
, et al
.
G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow
.
Blood
.
2005
;
106
(
9
):
3020
-
3027
.
30.
Mende
N
,
Jolly
A
,
Percin
GI
, et al
.
Prospective isolation of nonhematopoietic cells of the niche and their differential molecular interactions with HSCs
.
Blood
.
2019
;
134
(
15
):
1214
-
1226
.
31.
Logan
M
,
Martin
JF
,
Nagy
A
,
Lobe
C
,
Olson
EN
,
Tabin
CJ
.
Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer
.
Genesis
.
2002
;
33
(
2
):
77
-
80
.
32.
Tronche
F
,
Kellendonk
C
,
Kretz
O
, et al
.
Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety
.
Nat Genet
.
1999
;
23
(
1
):
99
-
103
.
33.
Sakai
K
,
Hiripi
L
,
Glumoff
V
, et al
.
Stage-and tissue-specific expression of a Col2a1-Cre fusion gene in transgenic mice
.
Matrix Biol
.
2001
;
19
(
8
):
761
-
767
.
34.
Rodda
SJ
,
McMahon
AP
.
Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors
.
Development
.
2006
;
133
(
16
):
3231
-
3244
.
35.
Lu
Y
,
Xie
Y
,
Zhang
S
,
Dusevich
V
,
Bonewald
LF
,
Feng
JQ
.
DMP1-targeted Cre expression in odontoblasts and osteocytes
.
J Dent Res
.
2007
;
86
(
4
):
320
-
325
.
36.
Srinivas
S
,
Watanabe
T
,
Lin
CS
, et al
.
Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
.
BMC Dev Biol
.
2001
;
1
(
1
):
4
.
37.
Green
AC
,
Rudolph-Stringer
V
,
Straszkowski
L
, et al
.
Retinoic acid receptor γ activity in mesenchymal stem cells regulates endochondral bone, angiogenesis, and B lymphopoiesis
.
J Bone Miner Res
.
2018
;
33
(
12
):
2202
-
2213
.
38.
Joseph
C
,
Nota
C
,
Fletcher
JL
,
Maluenda
AC
,
Green
AC
,
Purton
LE
.
Retinoic acid receptor γ regulates B and T lymphopoiesis via Nestin-expressing cells in the bone marrow and thymic microenvironments
.
J Immunol
.
2016
;
196
(
5
):
2132
-
2144
.
39.
Allan
EH
,
Ho
PW
,
Umezawa
A
, et al
.
Differentiation potential of a mouse bone marrow stromal cell line
.
J Cell Biochem
.
2003
;
90
(
1
):
158
-
169
.
40.
Kuri-Harcuch
W
,
Green
H
.
Adipose conversion of 3T3 cells depends on a serum factor
.
Proc Natl Acad Sci U S A
.
1978
;
75
(
12
):
6107
-
6109
.
41.
Singbrant
S
,
Russell
MR
,
Jovic
T
, et al
.
Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment
.
Blood
.
2011
;
117
(
21
):
5631
-
5642
.
42.
Parra
ER
,
Uraoka
N
,
Jiang
M
, et al
.
Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues
.
Sci Rep
.
2017
;
7
(
1
):
13380
.
43.
Schindelin
J
,
Arganda-Carreras
I
,
Frise
E
, et al
.
Fiji: an open-source platform for biological-image analysis
.
Nat Methods
.
2012
;
9
(
7
):
676
-
682
.
44.
Hu
Y
,
Smyth
GK
.
ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays
.
J Immunol Methods
.
2009
;
347
(
1-2
):
70
-
78
.
45.
Baker
EK
,
Taylor
S
,
Gupte
A
, et al
.
Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma
.
Bone
.
2015
;
73
:
223
-
232
.
46.
Noll
JE
,
Williams
SA
,
Tong
CM
, et al
.
Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells
.
Haematologica
.
2014
;
99
(
1
):
163
-
171
.
47.
Green
AC
,
Kocovski
P
,
Jovic
T
, et al
.
Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells
.
Exp Cell Res
.
2017
;
350
(
1
):
284
-
297
.
48.
Kusumbe
AP
,
Ramasamy
SK
,
Itkin
T
, et al
.
Age-dependent modulation of vascular niches for haematopoietic stem cells
.
Nature
.
2016
;
532
(
7599
):
380
-
384
.
49.
Rosen
ED
,
MacDougald
OA
.
Adipocyte differentiation from the inside out
.
Nat Rev Mol Cell Biol
.
2006
;
7
(
12
):
885
-
896
.
50.
Christodoulou
C
,
Spencer
JA
,
Yeh
SA
, et al
.
Live-animal imaging of native haematopoietic stem and progenitor cells
.
Nature
.
2020
;
578
(
7794
):
278
-
283
.
51.
Pietras
EM
,
Reynaud
D
,
Kang
YA
, et al
.
Functionally distinct subsets of lineage-biased multipotent progenitors control blood production in normal and regenerative conditions
.
Cell Stem Cell
.
2015
;
17
(
1
):
35
-
46
.
52.
Pronk
CJ
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell
.
2007
;
1
(
4
):
428
-
442
.
53.
Liu
J
,
Zhang
J
,
Ginzburg
Y
, et al
.
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis
.
Blood
.
2013
;
121
(
8
):
e43
-
e49
.
54.
Walkley
CR
,
Yuan
YD
,
Chandraratna
RA
,
McArthur
GA
.
Retinoic acid receptor antagonism in vivo expands the numbers of precursor cells during granulopoiesis
.
Leukemia
.
2002
;
16
(
9
):
1763
-
1772
.
55.
Kovacic
B
,
Hoelbl-Kovacic
A
,
Fischhuber
KM
, et al
.
Lactotransferrin-Cre reporter mice trace neutrophils, monocytes/macrophages and distinct subtypes of dendritic cells
.
Haematologica
.
2014
;
99
(
6
):
1006
-
1015
.
56.
Askmyr
M
,
Sims
NA
,
Martin
TJ
,
Purton
LE
.
What is the true nature of the osteoblastic hematopoietic stem cell niche?
Trends Endocrinol Metab
.
2009
;
20
(
6
):
303
-
309
.
57.
Short
BJ
,
Brouard
N
,
Simmons
PJ
.
Prospective isolation of mesenchymal stem cells from mouse compact bone
.
Methods Mol Biol
.
2009
;
482
:
259
-
268
.
58.
Matic
I
,
Matthews
BG
,
Wang
X
, et al
.
Quiescent bone lining cells are a major source of osteoblasts during adulthood
.
Stem Cells
.
2016
;
34
(
12
):
2930
-
2942
.
59.
Boyce
BF
,
Xing
L
.
Functions of RANKL/RANK/OPG in bone modeling and remodeling
.
Arch Biochem Biophys
.
2008
;
473
(
2
):
139
-
146
.
60.
Colciago
A
,
Celotti
F
,
Casati
L
, et al
.
In vitro effects of PDGF isoforms (AA, BB, AB and CC) on migration and proliferation of SaOS-2 osteoblasts and on migration of human osteoblasts
.
Int J Biomed Sci
.
2009
;
5
(
4
):
380
-
389
.
61.
Fiedler
J
,
Röderer
G
,
Günther
KP
,
Brenner
RE
.
BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells
.
J Cell Biochem
.
2002
;
87
(
3
):
305
-
312
.
62.
Sanchez-Fernandez
MA
,
Gallois
A
,
Riedl
T
,
Jurdic
P
,
Hoflack
B
.
Osteoclasts control osteoblast chemotaxis via PDGF-BB/PDGF receptor beta signaling
.
PLoS One
.
2008
;
3
(
10
):
e3537
.
63.
Chen
W
,
Baylink
DJ
,
Brier-Jones
J
, et al
.
PDGFB-based stem cell gene therapy increases bone strength in the mouse
.
Proc Natl Acad Sci U S A
.
2015
;
112
(
29
):
E3893
-
E3900
.
64.
Böhm
AM
,
Dirckx
N
,
Tower
RJ
, et al
.
Activation of skeletal stem and progenitor cells for bone regeneration is driven by PDGFRβ signaling
.
Dev Cell
.
2019
;
51
(
2
):
236
-
254.e12
.
65.
Tokoyoda
K
,
Egawa
T
,
Sugiyama
T
,
Choi
BI
,
Nagasawa
T
.
Cellular niches controlling B lymphocyte behavior within bone marrow during development
.
Immunity
.
2004
;
20
(
6
):
707
-
718
.
66.
Ara
T
,
Itoi
M
,
Kawabata
K
, et al
.
A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo
.
J Immunol
.
2003
;
170
(
9
):
4649
-
4655
.
67.
Calvi
LM
,
Link
DC
.
Cellular complexity of the bone marrow hematopoietic stem cell niche
.
Calcif Tissue Int
.
2014
;
94
(
1
):
112
-
124
.
68.
Silberstein
L
,
Goncalves
KA
,
Kharchenko
PV
, et al
.
Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators
.
Cell Stem Cell
.
2016
;
19
(
4
):
530
-
543
.
69.
Zhang
J
,
Link
DC
.
Targeting of mesenchymal stromal cells by Cre-recombinase transgenes commonly used to target osteoblast lineage cells
.
J Bone Miner Res
.
2016
;
31
(
11
):
2001
-
2007
.
70.
Chen
J
,
Shi
Y
,
Regan
J
,
Karuppaiah
K
,
Ornitz
DM
,
Long
F
.
Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice
.
PLoS One
.
2014
;
9
(
1
):
e85161
.
71.
Baccin
C
,
Al-Sabah
J
,
Velten
L
, et al
.
Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization
.
Nat Cell Biol
.
2020
;
22
(
1
):
38
-
48
.
You do not currently have access to this content.

Sign in via your Institution

Sign In