Key Points

  • Overexpressing AID in Eμ-TCL1 mice enhances leukemia cell proliferation and causes more aggressive disease.

  • TCL1/AID mice develop AID-induced mutations in cancer driver genes at identical amino acid substitutions as in human neoplasms.

Abstract

Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eμ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.

REFERENCES

1.
Chiorazzi
N
,
Rai
KR
,
Ferrarini
M
.
Chronic lymphocytic leukemia
.
N Engl J Med
.
2005
;
352
(
8
):
804
-
815
.
2.
Kipps
TJ
,
Stevenson
FK
,
Wu
CJ
, et al
.
Chronic lymphocytic leukaemia [published correction appears in Nat Rev Dis Primers. 2017;3:17008]
.
Nat Rev Dis Primers
.
2017
;
3
:
16096
.
3.
Chiorazzi
N
.
Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells
.
Best Pract Res Clin Haematol
.
2007
;
20
(
3
):
399
-
413
.
4.
Murphy
EJ
,
Neuberg
DS
,
Rassenti
LZ
, et al
.
Leukemia-cell proliferation and disease progression in patients with early stage chronic lymphocytic leukemia
.
Leukemia
.
2017
;
31
(
6
):
1348
-
1354
.
5.
Chen
SS
,
Chang
BY
,
Chang
S
, et al
.
BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia
.
Leukemia
.
2016
;
30
(
4
):
833
-
843
.
6.
Herishanu
Y
,
Pérez-Galán
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
2
):
563
-
574
.
7.
Herndon
TM
,
Chen
SS
,
Saba
NS
, et al
.
Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood
.
Leukemia
.
2017
;
31
(
6
):
1340
-
1347
.
8.
Burger
JA
,
Wiestner
A
.
Targeting B cell receptor signalling in cancer: preclinical and clinical advances
.
Nat Rev Cancer
.
2018
;
18
(
3
):
148
-
167
.
9.
Caligaris-Cappio
F
,
Bertilaccio
MT
,
Scielzo
C
.
How the microenvironment wires the natural history of chronic lymphocytic leukemia
.
Semin Cancer Biol
.
2014
;
24
:
43
-
48
.
10.
Cols
M
,
Barra
CM
,
He
B
, et al
.
Stromal endothelial cells establish a bidirectional crosstalk with chronic lymphocytic leukemia cells through the TNF-related factors BAFF, APRIL, and CD40L
.
J Immunol
.
2012
;
188
(
12
):
6071
-
6083
.
11.
Muramatsu
M
,
Sankaranand
VS
,
Anant
S
, et al
.
Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells
.
J Biol Chem
.
1999
;
274
(
26
):
18470
-
18476
.
12.
Robbiani
DF
,
Bunting
S
,
Feldhahn
N
, et al
.
AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations
.
Mol Cell
.
2009
;
36
(
4
):
631
-
641
.
13.
Pettersen
HS
,
Galashevskaya
A
,
Doseth
B
, et al
.
AID expression in B-cell lymphomas causes accumulation of genomic uracil and a distinct AID mutational signature
.
DNA Repair (Amst)
.
2015
;
25
:
60
-
71
.
14.
Casellas
R
,
Basu
U
,
Yewdell
WT
,
Chaudhuri
J
,
Robbiani
DF
,
Di Noia
JM
.
Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity
.
Nat Rev Immunol
.
2016
;
16
(
3
):
164
-
176
.
15.
Oppezzo
P
,
Vuillier
F
,
Vasconcelos
Y
, et al
.
Chronic lymphocytic leukemia B cells expressing AID display dissociation between class switch recombination and somatic hypermutation
.
Blood
.
2003
;
101
(
10
):
4029
-
4032
.
16.
Albesiano
E
,
Messmer
BT
,
Damle
RN
,
Allen
SL
,
Rai
KR
,
Chiorazzi
N
.
Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone
.
Blood
.
2003
;
102
(
9
):
3333
-
3339
.
17.
Patten
PE
,
Chu
CC
,
Albesiano
E
, et al
.
IGHV-unmutated and IGHV-mutated chronic lymphocytic leukemia cells produce activation-induced deaminase protein with a full range of biologic functions
.
Blood
.
2012
;
120
(
24
):
4802
-
4811
.
18.
Huemer
M
,
Rebhandl
S
,
Zaborsky
N
, et al
.
AID induces intraclonal diversity and genomic damage in CD86(+) chronic lymphocytic leukemia cells
.
Eur J Immunol
.
2014
;
44
(
12
):
3747
-
3757
.
19.
Bichi
R
,
Shinton
SA
,
Martin
ES
, et al
.
Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression
.
Proc Natl Acad Sci USA
.
2002
;
99
(
10
):
6955
-
6960
.
20.
Yan
XJ
,
Albesiano
E
,
Zanesi
N
, et al
.
B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia
.
Proc Natl Acad Sci USA
.
2006
;
103
(
31
):
11713
-
11718
.
21.
Okazaki
IM
,
Hiai
H
,
Kakazu
N
, et al
.
Constitutive expression of AID leads to tumorigenesis
.
J Exp Med
.
2003
;
197
(
9
):
1173
-
1181
.
22.
Prieto
D
,
Sotelo
N
,
Seija
N
, et al
.
S100-A9 protein in exosomes from chronic lymphocytic leukemia cells promotes NF-κB activity during disease progression
.
Blood
.
2017
;
130
(
6
):
777
-
788
.
23.
Palacios
F
,
Moreno
P
,
Morande
P
, et al
.
High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease
.
Blood
.
2010
;
115
(
22
):
4488
-
4496
.
24.
Cortizas
EM
,
Zahn
A
,
Safavi
S
, et al
.
UNG protects B cells from AID-induced telomere loss
.
J Exp Med
.
2016
;
213
(
11
):
2459
-
2472
.
25.
Li
H
,
Durbin
R
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2009
;
25
(
14
):
1754
-
1760
.
26.
McKenna
A
,
Hanna
M
,
Banks
E
, et al
.
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
.
Genome Res
.
2010
;
20
(
9
):
1297
-
1303
.
27.
Koboldt
DC
,
Zhang
Q
,
Larson
DE
, et al
.
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing
.
Genome Res
.
2012
;
22
(
3
):
568
-
576
.
28.
Gehring
JS
,
Fischer
B
,
Lawrence
M
,
Huber
W
.
SomaticSignatures: inferring mutational signatures from single-nucleotide variants
.
Bioinformatics
.
2015
;
31
(
22
):
3673
-
3675
.
29.
Hamblin
TJ
.
The TCL1 mouse as a model for chronic lymphocytic leukemia
.
Leuk Res
.
2010
;
34
(
2
):
135
-
136
.
30.
Landau
DA
,
Tausch
E
,
Taylor-Weiner
AN
, et al
.
Mutations driving CLL and their evolution in progression and relapse
.
Nature
.
2015
;
526
(
7574
):
525
-
530
.
31.
Alexandrov
LB
,
Nik-Zainal
S
,
Wedge
DC
, et al;
ICGC PedBrain
.
Signatures of mutational processes in human cancer [published correction appears in Nature. 2013;502(7470):258]
.
Nature
.
2013
;
500
(
7463
):
415
-
421
.
32.
Laskov
R
,
Yahud
V
,
Hamo
R
,
Steinitz
M
.
Preferential targeting of somatic hypermutation to hotspot motifs and hypermutable sites and generation of mutational clusters in the IgVH alleles of a rheumatoid factor producing lymphoblastoid cell line
.
Mol Immunol
.
2011
;
48
(
5
):
733
-
745
.
33.
Maura
F
,
Degasperi
A
,
Nadeu
F
, et al
.
A practical guide for mutational signature analysis in hematological malignancies [published correction appears in Nat Commun. 2019;10(1):3431]
.
Nat Commun
.
2019
;
10
(
1
):
2969
.
34.
Rogozin
IB
,
Lada
AG
,
Goncearenco
A
, et al
.
Activation induced deaminase mutational signature overlaps with CpG methylation sites in follicular lymphoma and other cancers
.
Sci Rep
.
2016
;
6
:
38133
.
35.
Klein
IA
,
Resch
W
,
Jankovic
M
, et al
.
Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes
.
Cell
.
2011
;
147
(
1
):
95
-
106
.
36.
Yamane
A
,
Resch
W
,
Kuo
N
, et al
.
Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes
.
Nat Immunol
.
2011
;
12
(
1
):
62
-
69
.
37.
Qian
J
,
Wang
Q
,
Dose
M
, et al
.
B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity
.
Cell
.
2014
;
159
(
7
):
1524
-
1537
.
38.
Álvarez-Prado
AF
,
Pérez-Durán
P
,
Pérez-García
A
, et al
.
A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets
.
J Exp Med
.
2018
;
215
(
3
):
761
-
771
.
39.
Zaborsky
N
,
Gassner
FJ
,
Hopner
JP
, et al
.
Exome sequencing of the TCL1 mouse model for CLL reveals genetic heterogeneity and dynamics during disease development
.
Leukemia
.
2019
;
33
(
4
):
957
-
968
.
40.
Decker
S
,
Finter
J
,
Forde
AJ
, et al
.
PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)
.
Mol Cancer Ther
.
2014
;
13
(
5
):
1231
-
1245
.
41.
Märklin
M
,
Heitmann
JS
,
Fuchs
AR
, et al
.
NFAT2 is a critical regulator of the anergic phenotype in chronic lymphocytic leukaemia
.
Nat Commun
.
2017
;
8
(
1
):
755
.
42.
Gutierrez
A
Jr.
,
Tschumper
RC
,
Wu
X
, et al
.
LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis
.
Blood
.
2010
;
116
(
16
):
2975
-
2983
.
43.
Rush
JS
,
Liu
M
,
Odegard
VH
,
Unniraman
S
,
Schatz
DG
.
Expression of activation-induced cytidine deaminase is regulated by cell division, providing a mechanistic basis for division-linked class switch recombination
.
Proc Natl Acad Sci USA
.
2005
;
102
(
37
):
13242
-
13247
.
44.
Calissano
C
,
Damle
RN
,
Hayes
G
, et al
.
In vivo intraclonal and interclonal kinetic heterogeneity in B-cell chronic lymphocytic leukemia
.
Blood
.
2009
;
114
(
23
):
4832
-
4842
.
45.
Wang
L
,
Shalek
AK
,
Lawrence
M
, et al
.
Somatic mutation as a mechanism of Wnt/β-catenin pathway activation in CLL
.
Blood
.
2014
;
124
(
7
):
1089
-
1098
.
46.
Gandhi
V
,
Balakrishnan
K
,
Chen
LS
.
Mcl-1: the 1 in CLL
.
Blood
.
2008
;
112
(
9
):
3538
-
3540
.
47.
Larsson
LG
,
Schena
M
,
Carlsson
M
,
Sällström
J
,
Nilsson
K
.
Expression of the c-myc protein is down-regulated at the terminal stages during in vitro differentiation of B-type chronic lymphocytic leukemia cells
.
Blood
.
1991
;
77
(
5
):
1025
-
1032
.
48.
Palacios
F
,
Abreu
C
,
Prieto
D
, et al
.
Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation
.
Leukemia
.
2015
;
29
(
1
):
115
-
125
.
49.
Vervoort
SJ
,
van Boxtel
R
,
Coffer
PJ
.
The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe?
Oncogene
.
2013
;
32
(
29
):
3397
-
3409
.
50.
Porter
SN
,
Magee
JA
.
PRKCH regulates hematopoietic stem cell function and predicts poor prognosis in acute myeloid leukemia
.
Exp Hematol
.
2017
;
53
:
43
-
47
.
51.
Pérez-Durán
P
,
de Yebenes
VG
,
Ramiro
AR
.
Oncogenic events triggered by AID, the adverse effect of antibody diversification
.
Carcinogenesis
.
2007
;
28
(
12
):
2427
-
2433
.
52.
Puente
XS
,
Beà
S
,
Valdés-Mas
R
, et al
.
Non-coding recurrent mutations in chronic lymphocytic leukaemia
.
Nature
.
2015
;
526
(
7574
):
519
-
524
.
53.
Lohr
JG
,
Stojanov
P
,
Lawrence
MS
, et al
.
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing
.
Proc Natl Acad Sci USA
.
2012
;
109
(
10
):
3879
-
3884
.
54.
Puente
XS
,
Jares
P
,
Campo
E
.
Chronic lymphocytic leukemia and mantle cell lymphoma: crossroads of genetic and microenvironment interactions
.
Blood
.
2018
;
131
(
21
):
2283
-
2296
.
55.
In:
Wiernik
PH
,
Dutcher
JP
,
Gertz
MA
, eds.
Neoplastic Diseases of the Blood
, 6th ed.
Cham, Switzerland
:
Springer International Publishing AG
;
2018
:
56.
Morishita
D
,
Takami
M
,
Yoshikawa
S
, et al
.
Cell-permeable carboxyl-terminal p27(Kip1) peptide exhibits anti-tumor activity by inhibiting Pim-1 kinase
.
J Biol Chem
.
2011
;
286
(
4
):
2681
-
2688
.
57.
Rezaei Araghi
R
,
Bird
GH
,
Ryan
JA
, et al
.
Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells
.
Proc Natl Acad Sci USA
.
2018
;
115
(
5
):
E886
-
E895
.
58.
Zhou
BR
,
Jiang
J
,
Feng
H
,
Ghirlando
R
,
Xiao
TS
,
Bai
Y
.
Structural mechanisms of nucleosome recognition by linker histones
.
Mol Cell
.
2015
;
59
(
4
):
628
-
638
.
59.
Bednar
J
,
Garcia-Saez
I
,
Boopathi
R
, et al
.
Structure and dynamics of a 197 bp nucleosome in complex with linker histone H1 [published correction appears in Mol Cell. 2017;66(5):729]
.
Mol Cell
.
2017
;
66
(
3
):
384
-
397.e8
.
60.
Cerf
C
,
Lippens
G
,
Ramakrishnan
V
, et al
.
Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure, and comparison with the globular domain of histone H5
.
Biochemistry
.
1994
;
33
(
37
):
11079
-
11086
.
61.
Chen
LS
,
Redkar
S
,
Bearss
D
,
Wierda
WG
,
Gandhi
V
.
Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells
.
Blood
.
2009
;
114
(
19
):
4150
-
4157
.
62.
Taylor
SS
,
Kornev
AP
.
Protein kinases: evolution of dynamic regulatory proteins
.
Trends Biochem Sci
.
2011
;
36
(
2
):
65
-
77
.
63.
Bolesta
E
,
Pfannenstiel
LW
,
Demelash
A
, et al
.
Inhibition of Mcl-1 promotes senescence in cancer cells: implications for preventing tumor growth and chemotherapy resistance
.
Mol Cell Biol
.
2012
;
32
(
10
):
1879
-
1892
.
64.
Kotschy
A
,
Szlavik
Z
,
Murray
J
, et al
.
The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models
.
Nature
.
2016
;
538
(
7626
):
477
-
482
.
65.
Greaves
M
,
Maley
CC
.
Clonal evolution in cancer
.
Nature
.
2012
;
481
(
7381
):
306
-
313
.
66.
Hanahan
D
,
Weinberg
RA
.
Hallmarks of cancer: the next generation
.
Cell
.
2011
;
144
(
5
):
646
-
674
.
67.
Heintel
D
,
Kroemer
E
,
Kienle
D
, et al;
German CLL Study Group
.
High expression of activation-induced cytidine deaminase (AID) mRNA is associated with unmutated IGVH gene status and unfavourable cytogenetic aberrations in patients with chronic lymphocytic leukaemia
.
Leukemia
.
2004
;
18
(
4
):
756
-
762
.
68.
Hoyer
KK
,
French
SW
,
Turner
DE
, et al
.
Dysregulated TCL1 promotes multiple classes of mature B cell lymphoma
.
Proc Natl Acad Sci USA
.
2002
;
99
(
22
):
14392
-
14397
.
69.
Calissano
C
,
Damle
RN
,
Marsilio
S
, et al
.
Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells
.
Mol Med
.
2011
;
17
(
11-12
):
1374
-
1382
.
70.
Messmer
BT
,
Messmer
D
,
Allen
SL
, et al
.
In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells
.
J Clin Invest
.
2005
;
115
(
3
):
755
-
764
.
71.
Ye
X
,
Ren
W
,
Liu
D
, et al
.
Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas
.
J Exp Med
.
2021
;
218
(
2
):
e20200573
.
72.
Kasar
S
,
Kim
J
,
Improgo
R
, et al
.
Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution
.
Nat Commun
.
2015
;
6
:
8866
.
73.
Kasar
S
,
Brown
JR
.
Mutational landscape and underlying mutational processes in chronic lymphocytic leukemia
.
Mol Cell Oncol
.
2016
;
3
(
4
):
e1157667
.
74.
Simonetti
G
,
Bertilaccio
MT
,
Ghia
P
,
Klein
U
.
Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy
.
Blood
.
2014
;
124
(
7
):
1010
-
1019
.
75.
Oppezzo
P
,
Dumas
G
,
Lalanne
AI
, et al
.
Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells
.
Blood
.
2005
;
105
(
6
):
2495
-
2503
.
76.
Leuenberger
M
,
Frigerio
S
,
Wild
PJ
, et al
.
AID protein expression in chronic lymphocytic leukemia/small lymphocytic lymphoma is associated with poor prognosis and complex genetic alterations
.
Mod Pathol
.
2010
;
23
(
2
):
177
-
186
.
77.
Cervantes-Gomez
F
,
Stellrecht
CM
,
Ayres
ML
,
Keating
MJ
,
Wierda
WG
,
Gandhi
V
.
PIM kinase inhibitor, AZD1208, inhibits protein translation and induces autophagy in primary chronic lymphocytic leukemia cells
.
Oncotarget
.
2019
;
10
(
29
):
2793
-
2809
.
78.
Liu
J
,
Chen
G
,
Feng
L
, et al
.
Loss of p53 and altered miR15-a/16-1→MCL-1 pathway in CLL: insights from TCL1-Tg:p53(-/-) mouse model and primary human leukemia cells
.
Leukemia
.
2014
;
28
(
1
):
118
-
128
.
79.
Izzo
A
,
Schneider
R
.
The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics
.
Biochim Biophys Acta
.
2016
;
1859
(
3
):
486
-
495
.
80.
Rossi
D
,
Berra
E
,
Cerri
M
, et al
.
Aberrant somatic hypermutation in transformation of follicular lymphoma and chronic lymphocytic leukemia to diffuse large B-cell lymphoma
.
Haematologica
.
2006
;
91
(
10
):
1405
-
1409
.
You do not currently have access to this content.

Sign in via your Institution

Sign In