• Class II human leukocyte antigen (HLA) loci in idiopathic BMF disorders are characterized by low structural divergence.

  • This immunogenetic pattern contributes to a decreased T-cell receptor repertoire diversity, favoring crossreactivity and autoimmunity.

Idiopathic aplastic anemia (IAA) is a rare autoimmune bone marrow failure (BMF) disorder initiated by a human leukocyte antigen (HLA)-restricted T-cell response to unknown antigens. As in other autoimmune disorders, the predilection for certain HLA profiles seems to represent an etiologic factor; however, the structure-function patterns involved in the self-presentation in this disease remain unclear. Herein, we analyzed the molecular landscape of HLA complexes of a cohort of 300 IAA patients and almost 3000 healthy and disease controls by deeply dissecting their genotypic configurations, functional divergence, self-antigen binding capabilities, and T-cell receptor (TCR) repertoire specificities. Specifically, analysis of the evolutionary divergence of HLA genotypes (HED) showed that IAA patients carried class II HLA molecules whose antigen-binding sites were characterized by a high level of structural homology, only partially explained by specific risk allele profiles. This pattern implies reduced HLA binding capabilities, confirmed by binding analysis of hematopoietic stem cell (HSC)-derived self-peptides. IAA phenotype was associated with the enrichment in a few amino acids at specific positions within the peptide-binding groove of DRB1 molecules, affecting the interface HLA-antigen-TCR β and potentially constituting the basis of T-cell dysfunction and autoreactivity. When analyzing associations with clinical outcomes, low HED was associated with risk of malignant progression and worse survival, underlying reduced tumor surveillance in clearing potential neoantigens derived from mechanisms of clonal hematopoiesis. Our data shed light on the immunogenetic risk associated with IAA etiology and clonal evolution and on general pathophysiological mechanisms potentially involved in other autoimmune disorders.

1.
Young
NS
,
Maciejewski
J
.
The pathophysiology of acquired aplastic anemia
.
N Engl J Med.
1997
;
336
(
19
):
1365
-
1372
.
2.
Babushok
DV
,
Duke
JL
,
Xie
HM
, et al
.
Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications
.
Blood Adv.
2017
;
1
(
22
):
1900
-
1910
.
3.
Zaimoku
Y
,
Takamatsu
H
,
Hosomichi
K
, et al
.
Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia
.
Blood.
2017
;
129
(
21
):
2908
-
2916
.
4.
Katagiri
T
,
Sato-Otsubo
A
,
Kashiwase
K
, et al;
Japan Marrow Donor Program
.
Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia
.
Blood.
2011
;
118
(
25
):
6601
-
6609
.
5.
Afable
MG
II
,
Wlodarski
M
,
Makishima
H
, et al
.
SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes
.
Blood.
2011
;
117
(
25
):
6876
-
6884
.
6.
Young
NS
,
Maciejewski
JP
.
Genetic and environmental effects in paroxysmal nocturnal hemoglobinuria: this little PIG-A goes “Why? Why? Why?”
.
J Clin Invest.
2000
;
106
(
5
):
637
-
641
.
7.
Young
NS
.
Current concepts in the pathophysiology and treatment of aplastic anemia
.
Hematology (Am Soc Hematol Educ Program).
2013
;
2013
(
1
):
76
-
81
.
8.
Risitano
AM
,
Kook
H
,
Zeng
W
,
Chen
G
,
Young
NS
,
Maciejewski
JP
.
Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry
.
Blood.
2002
;
100
(
1
):
178
-
183
.
9.
Wlodarski
MW
,
Gondek
LP
,
Nearman
ZP
, et al
.
Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome
.
Blood.
2006
;
108
(
8
):
2632
-
2641
.
10.
Zeng
W
,
Maciejewski
JP
,
Chen
G
,
Young
NS
.
Limited heterogeneity of T cell receptor BV usage in aplastic anemia
.
J Clin Invest.
2001
;
108
(
5
):
765
-
773
.
11.
Risitano
AM
,
Maciejewski
JP
,
Green
S
,
Plasilova
M
,
Zeng
W
,
Young
NS
.
In-vivo dominant immune responses in aplastic anaemia: molecular tracking of putatively pathogenetic T-cell clones by TCR β-CDR3 sequencing
.
Lancet.
2004
;
364
(
9431
):
355
-
364
.
12.
Selleri
C
,
Maciejewski
JP
,
Sato
T
,
Young
NS
.
Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition
.
Blood.
1996
;
87
(
10
):
4149
-
4157
.
13.
Sloand
E
,
Kim
S
,
Maciejewski
JP
,
Tisdale
J
,
Follmann
D
,
Young
NS
.
Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia
.
Blood.
2002
;
100
(
4
):
1185
-
1191
.
14.
Maciejewski
J
,
Selleri
C
,
Anderson
S
,
Young
NS
.
Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro
.
Blood.
1995
;
85
(
11
):
3183
-
3190
.
15.
Nisticò
A
,
Young
NS
.
gamma-Interferon gene expression in the bone marrow of patients with aplastic anemia
.
Ann Intern Med.
1994
;
120
(
6
):
463
-
469
.
16.
Zoumbos
NC
,
Gascón
P
,
Djeu
JY
,
Trost
SR
,
Young
NS
.
Circulating activated suppressor T lymphocytes in aplastic anemia
.
N Engl J Med.
1985
;
312
(
5
):
257
-
265
.
17.
de Latour
RP
,
Visconte
V
,
Takaku
T
, et al
.
Th17 immune responses contribute to the pathophysiology of aplastic anemia
.
Blood.
2010
;
116
(
20
):
4175
-
4184
.
18.
Kordasti
S
,
Marsh
J
,
Al-Khan
S
, et al
.
Functional characterization of CD4+ T cells in aplastic anemia
.
Blood.
2012
;
119
(
9
):
2033
-
2043
.
19.
Kordasti
S
,
Costantini
B
,
Seidl
T
, et al
.
Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment
.
Blood.
2016
;
128
(
9
):
1193
-
1205
.
20.
Luzzatto
L
,
Bessler
M
,
Rotoli
B
.
Somatic mutations in paroxysmal nocturnal hemoglobinuria: a blessing in disguise?
Cell.
1997
;
88
(
1
):
1
-
4
.
21.
Kikkawa
E
,
Shiina
T
,
Shigenari
A
, et al
.
Detection of 6pLOH in an aplastic anemia patient by in phase HLA genotyping
.
HLA.
2020
;
95
(
5
):
465
-
469
.
22.
Imi
T
,
Katagiri
T
,
Hosomichi
K
, et al
.
Sustained clonal hematopoiesis by HLA-lacking hematopoietic stem cells without driver mutations in aplastic anemia
.
Blood Adv.
2018
;
2
(
9
):
1000
-
1012
.
23.
Mizumaki
H
,
Hosomichi
K
,
Hosokawa
K
, et al
.
A frequent nonsense mutation in exon 1 across certain HLA-A and -B alleles in leukocytes of patients with acquired aplastic anemia
.
Haematologica.
2021
;
106
(
6
):
1581
-
1590
.
24.
Savage
SA
,
Viard
M
,
O’hUigin
C
, et al
.
Genome-wide Association Study Identifies HLA-DPB1 as a Significant Risk Factor for Severe Aplastic Anemia
.
Am J Hum Genet.
2020
;
106
(
2
):
264
-
271
.
25.
Saunthararajah
Y
,
Nakamura
R
,
Nam
J-M
, et al
.
HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome
.
Blood.
2002
;
100
(
5
):
1570
-
1574
.
26.
Maciejewski
JP
,
Follmann
D
,
Nakamura
R
, et al
.
Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal hemoglobinuria and the PNH/aplastic anemia syndrome
.
Blood.
2001
;
98
(
13
):
3513
-
3519
.
27.
Dhaliwal
JS
,
Wong
L
,
Kamaluddin
MA
,
Yin
LY
,
Murad
S
.
Susceptibility to aplastic anemia is associated with HLA-DRB1*1501 in an aboriginal population in Sabah, Malaysia
.
Hum Immunol.
2011
;
72
(
10
):
889
-
892
.
28.
Oguz
FS
,
Yalman
N
,
Diler
AS
,
Oguz
R
,
Anak
S
,
Dorak
MT
.
HLA-DRB1*15 and pediatric aplastic anemia
.
Haematologica.
2002
;
87
(
7
):
772
-
774
.
29.
Song
EY
,
Park
S
,
Lee
DS
,
Cho
HI
,
Park
MH
.
Association of human leukocyte antigen-DRB1 alleles with disease susceptibility and severity of aplastic anemia in Korean patients
.
Hum Immunol.
2008
;
69
(
6
):
354
-
359
.
30.
Yari
F
,
Sobhani
M
,
Vaziri
MZ
,
Bagheri
N
,
Sabaghi
F
,
Talebian
A
.
Association of aplastic anaemia and Fanconi’s disease with HLA-DRB1 alleles
.
Int J Immunogenet.
2008
;
35
(
6
):
453
-
456
.
31.
Nakao
S
,
Takami
A
,
Sugimori
N
, et al
.
Response to immunosuppressive therapy and an HLA-DRB1 allele in patients with aplastic anaemia: HLA-DRB1*1501 does not predict response to antithymocyte globulin
.
Br J Haematol.
1996
;
92
(
1
):
155
-
158
.
32.
Nakao
S
,
Takamatsu
H
,
Chuhjo
T
, et al
.
Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia
.
Blood.
1994
;
84
(
12
):
4257
-
4261
.
33.
Moutsianas
L
,
Jostins
L
,
Beecham
AH
, et al;
International IBD Genetics Consortium (IIBDGC)
.
Class II HLA interactions modulate genetic risk for multiple sclerosis
.
Nat Genet.
2015
;
47
(
10
):
1107
-
1113
.
34.
Varney
MD
,
Valdes
AM
,
Carlson
JA
, et al;
Type 1 Diabetes Genetics Consortium
.
HLA DPA1, DPB1 alleles and haplotypes contribute to the risk associated with type 1 diabetes: analysis of the type 1 diabetes genetics consortium families
.
Diabetes.
2010
;
59
(
8
):
2055
-
2062
.
35.
Chinniah
R
,
Rajendran
MS
,
Sivanadham
R
, et al
.
Association of HLA class II alleles/haplotypes and amino acid variations in the peptide binding pockets with rheumatoid arthritis
.
Int J Rheum Dis.
2019
;
22
(
8
):
1553
-
1562
.
36.
Wang
C
,
Zheng
X
,
Jiang
P
, et al
.
Genome-wide Association Studies of Specific Antinuclear Autoantibody Subphenotypes in Primary Biliary Cholangitis
.
Hepatology.
2019
;
70
(
1
):
294
-
307
.
37.
Kular
L
,
Liu
Y
,
Ruhrmann
S
, et al
.
DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis
.
Nat Commun.
2018
;
9
(
1
):
2397
.
38.
Grantham
R
.
Amino acid difference formula to help explain protein evolution
.
Science.
1974
;
185
(
4154
):
862
-
864
.
39.
Chowell
D
,
Krishna
C
,
Pierini
F
, et al
.
Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy
.
Nat Med.
2019
;
25
(
11
):
1715
-
1720
.
40.
Pierini
F
,
Lenz
TL
.
Divergent Allele Advantage at Human MHC Genes: Signatures of Past and Ongoing Selection
.
Mol Biol Evol.
2018
;
35
(
9
):
2145
-
2158
.
41.
Krishna
C
,
Chowell
D
,
Gönen
M
,
Elhanati
Y
,
Chan
TA
.
Genetic and environmental determinants of human TCR repertoire diversity
.
Immun Ageing.
2020
;
17
(
1
):
26
.
42.
Arora
J
,
McLaren
PJ
,
Chaturvedi
N
,
Carrington
M
,
Fellay
J
,
Lenz
TL
.
HIV peptidome-wide association study reveals patient-specific epitope repertoires associated with HIV control
.
Proc Natl Acad Sci USA.
2019
;
116
(
3
):
944
-
949
.
43.
Arora
J
,
Pierini
F
,
McLaren
PJ
,
Carrington
M
,
Fellay
J
,
Lenz
TL
.
HLA Heterozygote Advantage against HIV-1 Is Driven by Quantitative and Qualitative Differences in HLA Allele-Specific Peptide Presentation
.
Mol Biol Evol.
2020
;
37
(
3
):
639
-
650
.
44.
Robinson
J
,
Barker
DJ
,
Georgiou
X
,
Cooper
MA
,
Flicek
P
,
Marsh
SGE
.
IPD-IMGT/HLA Database
.
Nucleic Acids Res.
2020
;
48
(
D1
):
D948
-
D955
.
45.
Hennrich
ML
,
Romanov
N
,
Horn
P
, et al
.
Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline
.
Nat Commun.
2018
;
9
(
1
):
4004
.
46.
Zerbino
DR
,
Achuthan
P
,
Akanni
W
, et al
.
Ensembl 2018
.
Nucleic Acids Res.
2018
;
46
(
D1
):
D754
-
D761
.
47.
Reynisson
B
,
Barra
C
,
Kaabinejadian
S
,
Hildebrand
WH
,
Peters
B
,
Nielsen
M
.
Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data
.
J Proteome Res.
2020
;
19
(
6
):
2304
-
2315
.
48.
Roy
A
,
Kucukural
A
,
Zhang
Y
.
I-TASSER: a unified platform for automated protein structure and function prediction
.
Nat Protoc.
2010
;
5
(
4
):
725
-
738
.
49.
Yang
J
,
Zhang
Y
.
I-TASSER server: new development for protein structure and function predictions
.
Nucleic Acids Res.
2015
;
43
(
W1
):
W174-81
.
50.
Yang
C-Y
.
Comparative Analyses of the Conformational Dynamics Between the Soluble and Membrane-Bound Cytokine Receptors
.
Sci Rep.
2020
;
10
(
1
):
7399
.
51.
Robins
HS
,
Campregher
PV
,
Srivastava
SK
, et al
.
Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells
.
Blood.
2009
;
114
(
19
):
4099
-
4107
.
52.
Robins
H
,
Desmarais
C
,
Matthis
J
, et al
.
Ultra-sensitive detection of rare T cell clones
.
J Immunol Methods.
2012
;
375
(
1-2
):
14
-
19
.
53.
Carlson
CS
,
Emerson
RO
,
Sherwood
AM
, et al
.
Using synthetic templates to design an unbiased multiplex PCR assay
.
Nat Commun.
2013
;
4
(
1
):
2680
.
54.
Gentleman
R.
,
Carey
VJ
,
Huber
W
, et al, eds
.
Bioinformatics and Computational Biology Solutions Using R and Bioconductor.
New York, NY
:
Springer Science+Business Media
;
2005
.
55.
Nazarov
V
.
Immunarch.Bot, Rumynskiy E. immunomind/immunarch: 0.6.5: Basic single-cell support
.
Zenodo
;
2020
.
56.
Vita
R
,
Mahajan
S
,
Overton
JA
, et al
.
The Immune Epitope Database (IEDB): 2018 update
.
Nucleic Acids Res.
2019
;
47
(
D1
):
D339
-
D343
.
57.
Benjamini
,
Yoav
;
Hochberg
,
Yosef
.
Controlling the false discovery rate: a practical and powerful approach to multiple testing
.
J. Roy. Statist. Soc. Ser. B.
57
(
1995
), no.
1
,
289
-
300
.
58.
Dorak
MT
,
Shao
W
,
Machulla
HKG
, et al
.
Conserved extended haplotypes of the major histocompatibility complex: further characterization
.
Genes Immun.
2006
;
7
(
6
):
450
-
467
.
59.
Erlich
H
,
Valdes
AM
,
Noble
J
, et al;
Type 1 Diabetes Genetics Consortium
.
HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families
.
Diabetes.
2008
;
57
(
4
):
1084
-
1092
.
60.
Lenz
TL
,
Deutsch
AJ
,
Han
B
, et al
.
Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases
.
Nat Genet.
2015
;
47
(
9
):
1085
-
1090
.
61.
Hu
X
,
Deutsch
AJ
,
Lenz
TL
, et al
.
Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk
.
Nat Genet.
2015
;
47
(
8
):
898
-
905
.
62.
Yin
Y
,
Wang
XX
,
Mariuzza
RA
.
Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4
.
Proc Natl Acad Sci USA.
2012
;
109
(
14
):
5405
-
5410
.
63.
Potts
WK
,
Wakeland
EK
.
Evolution of diversity at the major histocompatibility complex
.
Trends Ecol Evol.
1990
;
5
(
6
):
181
-
187
.
64.
Wakeland
EK
,
Boehme
S
,
She
JX
, et al
.
Ancestral polymorphisms of MHC class II genes: divergent allele advantage
.
Immunol Res.
1990
;
9
(
2
):
115
-
122
.
65.
Sugimori
C
,
Yamazaki
H
,
Feng
X
, et al
.
Roles of DRB1 *1501 and DRB1 *1502 in the pathogenesis of aplastic anemia
.
Exp Hematol.
2007
;
35
(
1
):
13
-
20
.
66.
Zdimerova
H
,
Murer
A
,
Engelmann
C
, et al
.
Attenuated immune control of Epstein-Barr virus in humanized mice is associated with the multiple sclerosis risk factor HLA-DR15
.
Eur J Immunol.
2021
;
51
(
1
):
64
-
75
.
67.
Angelini
DF
,
Serafini
B
,
Piras
E
, et al
.
Increased CD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis
.
PLoS Pathog.
2013
;
9
(
4
):
e1003220
.
68.
Olsson
T
.
Epstein Barr virus infection and immune defense related to HLA-DR15: consequences for multiple sclerosis
.
Eur J Immunol.
2021
;
51
(
1
):
56
-
59
.
69.
Tengvall
K
,
Huang
J
,
Hellström
C
, et al
.
Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk
.
Proc Natl Acad Sci USA.
2019
;
116
(
34
):
16955
-
16960
.
70.
Huuhtanen
J
,
Lundgren
S
,
Keränen
MA
, et al
.
T Cell Landscape of Immune Aplastic Anemia Reveals a Convergent Antigen-Specific Signature
.
Blood.
2019
;
134
(
Supplement_1
):
108
-
108
.
71.
Glanville
J
,
Huang
H
,
Nau
A
, et al
.
Identifying specificity groups in the T cell receptor repertoire
.
Nature.
2017
;
547
(
7661
):
94
-
98
.
72.
Brightman
SE
,
Naradikian
MS
,
Miller
AM
,
Schoenberger
SP
.
Harnessing neoantigen specific CD4 T cells for cancer immunotherapy
.
J Leukoc Biol.
2020
;
107
(
4
):
625
-
633
.
73.
Marty Pyke
R
,
Thompson
WK
,
Salem
RM
,
Font-Burgada
J
,
Zanetti
M
,
Carter
H
.
Evolutionary Pressure against MHC Class II Binding Cancer Mutations
.
Cell.
2018
;
175
(
2
):
416
-
428.e13
.
74.
Haabeth
OAW
,
Tveita
AA
,
Fauskanger
M
, et al
.
How Do CD4(+) T Cells Detect and Eliminate Tumor Cells That Either Lack or Express MHC Class II Molecules?
Front Immunol.
2014
;
5
:
174
.
You do not currently have access to this content.

Sign in via your Institution