• Platelet-derived extracellular vesicles contain an active proteasome.

  • Platelet-derived extracellular vesicles can process and present antigen.

In addition to their hemostatic role, platelets play a significant role in immunity. Once activated, platelets release extracellular vesicles (EVs) formed by the budding of their cytoplasmic membranes. Because of their heterogeneity, platelet EVs (PEVs) are thought to perform diverse functions. It is unknown, however, whether the proteasome is transferred from platelets to PEVs or whether its function is retained. We hypothesized that functional protein processing and antigen presentation machinery are transferred to PEVs by activated platelets. Using molecular and functional assays, we found that the active 20S proteasome was enriched in PEVs, along with major histocompatibility complex class I (MHC-I) and lymphocyte costimulatory molecules (CD40L and OX40L). Proteasome-containing PEVs were identified in healthy donor blood, but did not increase in platelet concentrates that caused adverse transfusion reactions. They were augmented, however, after immune complex injections in mice. The complete biodistribution of murine PEVs after injection into mice revealed that they principally reached lymphoid organs, such as spleen and lymph nodes, in addition to the bone marrow, and to a lesser extent, liver and lungs. The PEV proteasome processed exogenous ovalbumin (OVA) and loaded its antigenic peptide onto MHC-I molecules, which promoted OVA-specific CD8+ T-lymphocyte proliferation. These results suggest that PEVs contribute to adaptive immunity through cross-presentation of antigens and have privileged access to immune cells through the lymphatic system, a tissue location that is inaccessible to platelets.

1.
Davì
G
,
Patrono
C
.
Platelet activation and atherothrombosis
.
N Engl J Med.
2007
;
357
(
24
):
2482
-
2494
.
2.
Ribeiro
LS
,
Migliari Branco
L
,
Franklin
BS
.
Regulation of Innate Immune Responses by Platelets
.
Front Immunol.
2019
;
10
:
1320
.
3.
Rayes
J
,
Bourne
JH
,
Brill
A
,
Watson
SP
.
The dual role of platelet-innate immune cell interactions in thrombo-inflammation
.
Res Pract Thromb Haemost.
2019
;
4
(
1
):
23
-
35
.
4.
Semple
JW
,
Italiano
JE
Jr
,
Freedman
J
.
Platelets and the immune continuum
.
Nat Rev Immunol.
2011
;
11
(
4
):
264
-
274
.
5.
Morrell
CN
,
Aggrey
AA
,
Chapman
LM
,
Modjeski
KL
.
Emerging roles for platelets as immune and inflammatory cells
.
Blood.
2014
;
123
(
18
):
2759
-
2767
.
6.
Kapur
R
,
Zufferey
A
,
Boilard
E
,
Semple
JW
.
Nouvelle cuisine: platelets served with inflammation
.
J Immunol.
2015
;
194
(
12
):
5579
-
5587
.
7.
Cunin
P
,
Nigrovic
PA
.
Megakaryocytes as immune cells
.
J Leukoc Biol.
2019
;
105
(
6
):
1111
-
1121
.
8.
Garraud
O
,
Cognasse
F
.
Are Platelets Cells? And if Yes, are They Immune Cells?
Front Immunol.
2015
;
6
:
70
.
9.
Opperman
CM
,
Sishi
BJ
.
Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS
.
Cell Biol Toxicol.
2015
;
31
(
2
):
83
-
94
.
10.
Tanaka
K
.
The proteasome: overview of structure and functions
.
Proc Jpn Acad, Ser B, Phys Biol Sci.
2009
;
85
(
1
):
12
-
36
.
11.
Klockenbusch
C
,
Walsh
GM
,
Brown
LM
, et al
.
Global proteome analysis identifies active immunoproteasome subunits in human platelets
.
Mol Cell Proteomics.
2014
;
13
(
12
):
3308
-
3319
.
12.
Dieudé
M
,
Bell
C
,
Turgeon
J
, et al
.
The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection
.
Sci Transl Med.
2015
;
7
(
318
):
318ra200
.
13.
Shi
DS
,
Smith
MC
,
Campbell
RA
, et al
.
Proteasome function is required for platelet production
.
J Clin Invest.
2014
;
124
(
9
):
3757
-
3766
.
14.
Murai
K
,
Kowata
S
,
Shimoyama
T
, et al
.
Bortezomib induces thrombocytopenia by the inhibition of proplatelet formation of megakaryocytes
.
Eur J Haematol.
2014
;
93
(
4
):
290
-
296
.
15.
Nayak
MK
,
Kulkarni
PP
,
Dash
D
.
Regulatory role of proteasome in determination of platelet life span
.
J Biol Chem.
2013
;
288
(
10
):
6826
-
6834
.
16.
Grundler
K
,
Rotter
R
,
Tilley
S
, et al
.
The proteasome regulates collagen-induced platelet aggregation via nuclear-factor-kappa-B (NFĸB) activation
.
Thromb Res.
2016
;
148
:
15
-
22
.
17.
Nayak
MK
,
Kumar
K
,
Dash
D
.
Regulation of proteasome activity in activated human platelets
.
Cell Calcium.
2011
;
49
(
4
):
226
-
232
.
18.
Grundler Groterhorst
K
,
Mannell
H
,
Pircher
J
,
Kraemer
BF
.
Platelet Proteasome Activity and Metabolism Is Upregulated during Bacterial Sepsis
.
Int J Mol Sci.
2019
;
20
(
23
):
E5961
.
19.
Gupta
N
,
Li
W
,
Willard
B
,
Silverstein
RL
,
McIntyre
TM
.
Proteasome proteolysis supports stimulated platelet function and thrombosis
.
Arterioscler Thromb Vasc Biol.
2014
;
34
(
1
):
160
-
168
.
20.
Colberg
L
,
Cammann
C
,
Greinacher
A
,
Seifert
U
.
Structure and function of the ubiquitin-proteasome system in platelets
.
J Thromb Haemost.
2020
;
18
(
4
):
771
-
780
.
21.
Yukawa
M
,
Sakon
M
,
Kambayashi
J
, et al
.
Purification and characterization of endogenous protein activator of human platelet proteasome
.
J Biochem.
1993
;
114
(
3
):
317
-
323
.
22.
Yukawa
M
,
Sakon
M
,
Kambayashi
J
, et al
.
Proteasome and its novel endogeneous activator in human platelets
.
Biochem Biophys Res Commun.
1991
;
178
(
1
):
256
-
262
.
23.
Boegel
S
,
Löwer
M
,
Bukur
T
,
Sorn
P
,
Castle
JC
,
Sahin
U
.
HLA and proteasome expression body map
.
BMC Med Genomics.
2018
;
11
(
1
):
36
.
24.
Semple
JW
,
Speck
ER
,
Milev
YP
,
Blanchette
V
,
Freedman
J
.
Indirect allorecognition of platelets by T helper cells during platelet transfusions correlates with anti-major histocompatibility complex antibody and cytotoxic T lymphocyte formation
.
Blood.
1995
;
86
(
2
):
805
-
812
.
25.
Zufferey
A
,
Speck
ER
,
Machlus
KR
, et al
.
Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets
.
Blood Adv.
2017
;
1
(
20
):
1773
-
1785
.
26.
Chapman
LM
,
Aggrey
AA
,
Field
DJ
, et al
.
Platelets present antigen in the context of MHC class I
.
J Immunol.
2012
;
189
(
2
):
916
-
923
.
27.
Zufferey
A
,
Schvartz
D
,
Nolli
S
,
Reny
JL
,
Sanchez
JC
,
Fontana
P
.
Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules
.
J Proteomics.
2014
;
101
:
130
-
140
.
28.
Iannacone
M
,
Sitia
G
,
Isogawa
M
, et al
.
Platelets mediate cytotoxic T lymphocyte-induced liver damage
.
Nat Med.
2005
;
11
(
11
):
1167
-
1169
.
29.
Verschoor
A
,
Neuenhahn
M
,
Navarini
AA
, et al
.
A platelet-mediated system for shuttling blood-borne bacteria to CD8α+ dendritic cells depends on glycoprotein GPIb and complement C3
.
Nat Immunol.
2011
;
12
(
12
):
1194
-
1201
.
30.
Maouia
A
,
Rebetz
J
,
Kapur
R
,
Semple
JW
.
The Immune Nature of Platelets Revisited
.
Transfus Med Rev.
2020
;
34
(
4
):
209
-
220
.
31.
Marcoux
G
,
Laroche
A
,
Espinoza Romero
J
,
Boilard
E
.
Role of platelets and megakaryocytes in adaptive immunity
.
Platelets.
2021
;
32
:
340
-
351
.
32.
Pariser
DN
,
Hilt
ZT
,
Ture
SK
, et al
.
Lung megakaryocytes are immune modulatory cells
.
J Clin Invest.
2021
;
131
(
1
):
137377
.
33.
Melki
I
,
Tessandier
N
,
Zufferey
A
,
Boilard
E
.
Platelet microvesicles in health and disease
.
Platelets.
2017
;
28
(
3
):
214
-
221
.
34.
Puhm
F
,
Boilard
E
,
Machlus
KR
.
Platelet Extracellular Vesicles: Beyond the Blood
.
Arterioscler Thromb Vasc Biol.
2021
;
41
(
1
)
87
-
96
.
35.
Siljander
PR
.
Platelet-derived microparticles - an updated perspective
.
Thromb Res.
2011
;
127
(
suppl 2
):
S30
-
S33
.
36.
Marcoux
G
,
Magron
A
,
Sut
C
, et al
.
Platelet-derived extracellular vesicles convey mitochondrial DAMPs in platelet concentrates and their levels are associated with adverse reactions
.
Transfusion.
2019
;
59
(
7
):
2403
-
2414
.
37.
Boudreau
LH
,
Duchez
AC
,
Cloutier
N
, et al
.
Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation
.
Blood.
2014
;
124
(
14
):
2173
-
2183
.
38.
Burnouf
T
,
Chou
ML
,
Goubran
H
,
Cognasse
F
,
Garraud
O
,
Seghatchian
J
.
An overview of the role of microparticles/microvesicles in blood components: Are they clinically beneficial or harmful?
Transfus Apheresis Sci.
2015
;
53
(
2
):
137
-
145
.
39.
Boilard
E
,
Nigrovic
PA
,
Larabee
K
, et al
.
Platelets amplify inflammation in arthritis via collagen-dependent microparticle production
.
Science.
2010
;
327
(
5965
):
580
-
583
.
40.
György
B
,
Szabó
TG
,
Turiák
L
, et al
.
Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle) signatures in joint diseases
.
PLoS One.
2012
;
7
(
11
):
e49726
.
41.
Tessandier
N
,
Melki
I
,
Cloutier
N
, et al
.
Platelets Disseminate Extracellular Vesicles in Lymph in Rheumatoid Arthritis
.
Arterioscler Thromb Vasc Biol.
2020
;
40
(
4
):
929
-
942
.
42.
Milasan
A
,
Tessandier
N
,
Tan
S
,
Brisson
A
,
Boilard
E
,
Martel
C
.
Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis
.
J Extracell Vesicles.
2016
;
5
(
1
):
31427
.
43.
French
SL
,
Butov
KR
,
Allaeys
I
, et al
.
Platelet-derived extracellular vesicles infiltrate and modify the bone marrow during inflammation
.
Blood Adv.
2020
;
4
(
13
):
3011
-
3023
.
44.
Sprague
DL
,
Elzey
BD
,
Crist
SA
,
Waldschmidt
TJ
,
Jensen
RJ
,
Ratliff
TL
.
Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles
.
Blood.
2008
;
111
(
10
):
5028
-
5036
.
45.
Yari
F
,
Motefaker
M
,
Nikougoftar
M
,
Khayati
Z
.
Interaction of Platelet-Derived Microparticles with a Human B-Lymphoblast Cell Line: A Clue for the Immunologic Function of the Microparticles
.
Transfus Med Hemother.
2018
;
45
(
1
):
55
-
61
.
46.
Sadallah
S
,
Amicarella
F
,
Eken
C
,
Iezzi
G
,
Schifferli
JA
.
Ectosomes released by platelets induce differentiation of CD4+T cells into T regulatory cells
.
Thromb Haemost.
2014
;
112
(
6
):
1219
-
1229
.
47.
Dinkla
S
,
van Cranenbroek
B
,
van der Heijden
WA
, et al
.
Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin
.
Blood.
2016
;
127
(
16
):
1976
-
1986
.
48.
Verdoes
M
,
Florea
BI
,
Menendez-Benito
V
, et al
.
A fluorescent broad-spectrum proteasome inhibitor for labeling proteasomes in vitro and in vivo
.
Chem Biol.
2006
;
13
(
11
):
1217
-
1226
.
49.
Raz
V
,
Raz
Y
,
Paniagua-Soriano
G
, et al
.
Proteasomal activity-based probes mark protein homeostasis in muscles
.
J Cachexia Sarcopenia Muscle.
2017
;
8
(
5
):
798
-
807
.
50.
Heijnen
HF
,
Schiel
AE
,
Fijnheer
R
,
Geuze
HJ
,
Sixma
JJ
.
Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules
.
Blood.
1999
;
94
(
11
):
3791
-
3799
.
51.
Semple
JW
,
Rebetz
J
,
Kapur
R
.
Transfusion-associated circulatory overload and transfusion-related acute lung injury
.
Blood.
2019
;
133
(
17
):
1840
-
1853
.
52.
Kapur
R
,
Kim
M
,
Rebetz
J
, et al
.
Gastrointestinal microbiota contributes to the development of murine transfusion-related acute lung injury
.
Blood Adv.
2018
;
2
(
13
):
1651
-
1663
.
53.
Kapur
R
,
Kim
M
,
Aslam
R
, et al
.
T regulatory cells and dendritic cells protect against transfusion-related acute lung injury via IL-10
.
Blood.
2017
;
129
(
18
):
2557
-
2569
.
54.
McKenzie
SE
,
Taylor
SM
,
Malladi
P
, et al
.
The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: a transgenic mouse model
.
J Immunol.
1999
;
162
(
7
):
4311
-
4318
.
55.
Cloutier
N
,
Allaeys
I
,
Marcoux
G
, et al
.
Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration
.
Proc Natl Acad Sci USA.
2018
;
115
(
7
):
E1550
-
E1559
.
56.
Melki
I
,
Allaeys
I
,
Tessandier
N
, et al
.
Platelets release mitochondrial antigens in systemic lupus erythematosus
.
Sci Transl Med.
2021
;
13
(
581
):
eaav5928
.
57.
Angénieux
C
,
Dupuis
A
,
Gachet
C
,
de la Salle
H
,
Maître
B
.
Cell surface expression of HLA I molecules as a marker of young platelets
.
J Thromb Haemost.
2019
;
17
(
9
):
1511
-
1521
.
58.
Núñez-Avellaneda
D
,
Mosso-Pani
MA
,
Sánchez-Torres
LE
,
Castro-Mussot
ME
,
Corona-de la Peña
NA
,
Salazar
MI
.
Dengue Virus Induces the Release of sCD40L and Changes in Levels of Membranal CD42b and CD40L Molecules in Human Platelets
.
Viruses.
2018
;
10
(
7
):
357
.
59.
Porgador
A
,
Yewdell
JW
,
Deng
Y
,
Bennink
JR
,
Germain
RN
.
Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody
.
Immunity.
1997
;
6
(
6
):
715
-
726
.
60.
Rand
ML
,
Wang
H
,
Bang
KW
,
Packham
MA
,
Freedman
J
.
Rapid clearance of procoagulant platelet-derived microparticles from the circulation of rabbits
.
J Thromb Haemost.
2006
;
4
(
7
):
1621
-
1623
.
61.
Rank
A
,
Nieuwland
R
,
Crispin
A
, et al
.
Clearance of platelet microparticles in vivo
.
Platelets.
2011
;
22
(
2
):
111
-
116
.
62.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature.
2017
;
544
(
7648
):
105
-
109
.
63.
Campbell
RA
,
Schwertz
H
,
Hottz
ED
, et al
.
Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3
.
Blood.
2019
;
133
(
19
):
2013
-
2026
.
64.
Marcoux
G
,
Duchez
AC
,
Rousseau
M
, et al
.
Microparticle and mitochondrial release during extended storage of different types of platelet concentrates
.
Platelets.
2017
;
28
(
3
):
272
-
280
.
65.
Princiotta
MF
,
Finzi
D
,
Qian
SB
, et al
.
Quantitating protein synthesis, degradation, and endogenous antigen processing
.
Immunity.
2003
;
18
(
3
):
343
-
354
.
66.
Sixt
SU
,
Dahlmann
B
.
Extracellular, circulating proteasomes and ubiquitin - incidence and relevance
.
Biochim Biophys Acta.
2008
;
1782
(
12
):
817
-
823
.
67.
Garcia
BA
,
Smalley
DM
,
Cho
H
,
Shabanowitz
J
,
Ley
K
,
Hunt
DF
.
The platelet microparticle proteome
.
J Proteome Res.
2005
;
4
(
5
):
1516
-
1521
.
68.
Dean
WL
,
Lee
MJ
,
Cummins
TD
,
Schultz
DJ
,
Powell
DW
.
Proteomic and functional characterisation of platelet microparticle size classes
.
Thromb Haemost.
2009
;
102
(
4
):
711
-
718
.
69.
Capriotti
AL
,
Caruso
G
,
Cavaliere
C
,
Piovesana
S
,
Samperi
R
,
Laganà
A
.
Proteomic characterization of human platelet-derived microparticles
.
Anal Chim Acta.
2013
;
776
:
57
-
63
.
70.
Benaroudj
N
,
Tarcsa
E
,
Cascio
P
,
Goldberg
AL
.
The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes
.
Biochimie.
2001
;
83
(
3-4
):
311
-
318
.
71.
Chen
Z
,
Larregina
AT
,
Morelli
AE
.
Impact of extracellular vesicles on innate immunity
.
Curr Opin Organ Transplant.
2019
;
24
(
6
):
670
-
678
.
72.
Lindenbergh
MFS
,
Stoorvogel
W
.
Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells
.
Annu Rev Immunol.
2018
;
36
(
1
):
435
-
459
.
73.
Lindenbergh
MFS
,
Wubbolts
R
,
Borg
EGF
,
van ’t Veld
EM
,
Boes
M
,
Stoorvogel
W
.
Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation
.
J Extracell Vesicles.
2020
;
9
(
1
):
1798606
.
74.
Federici
C
,
Shahaj
E
,
Cecchetti
S
, et al
.
Natural-Killer-Derived Extracellular Vesicles: Immune Sensors and Interactors
.
Front Immunol.
2020
;
11
:
262
.
75.
Zeng
F
,
Morelli
AE
.
Extracellular vesicle-mediated MHC cross-dressing in immune homeostasis, transplantation, infectious diseases, and cancer
.
Semin Immunopathol.
2018
;
40
(
5
):
477
-
490
.
76.
Noulsri
E
.
Effects of Cell-Derived Microparticles on Immune Cells and Potential Implications in Clinical Medicine
.
Lab Med.
2021
;
52
(
2
):
122
-
135
.
77.
Flaumenhaft
R
,
Dilks
JR
,
Richardson
J
, et al
.
Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles
.
Blood.
2009
;
113
(
5
):
1112
-
1121
.
78.
Gitz
E
,
Pollitt
AY
,
Gitz-Francois
JJ
, et al
.
CLEC-2 expression is maintained on activated platelets and on platelet microparticles
.
Blood.
2014
;
124
(
14
):
2262
-
2270
.
79.
Vogt
MB
,
Lahon
A
,
Arya
RP
,
Spencer Clinton
JL
,
Rico-Hesse
R
.
Dengue viruses infect human megakaryocytes, with probable clinical consequences
.
PLoS Negl Trop Dis.
2019
;
13
(
11
):
e0007837
.
80.
Becker
Y
,
Marcoux
G
,
Allaeys
I
, et al
.
Autoantibodies in Systemic Lupus Erythematosus Target Mitochondrial RNA
.
Front Immunol.
2019
;
10
:
1026
.
81.
Słomka
A
,
Urban
SK
,
Lukacs-Kornek
V
,
Żekanowska
E
,
Kornek
M
.
Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation?
Front Immunol.
2018
;
9
:
2723
.
82.
de Jong
OG
,
Kooijmans
SAA
,
Murphy
DE
, et al
.
Drug Delivery with Extracellular Vesicles: From Imagination to Innovation
.
Acc Chem Res.
2019
;
52
(
7
):
1761
-
1770
.
83.
Urbanelli
L
,
Buratta
S
,
Tancini
B
, et al
.
The Role of Extracellular Vesicles in Viral Infection and Transmission
.
Vaccines (Basel).
2019
;
7
(
3
):
102
.
84.
Jhunjhunwala
S
,
Hammer
C
,
Delamarre
L
.
Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion
.
Nat Rev Cancer.
2021
;
21
(
5
):
298
-
312
.
85.
Sabanovic
B
,
Piva
F
,
Cecati
M
,
Giulietti
M
.
Promising Extracellular Vesicle-Based Vaccines against Viruses, Including SARS-CoV-2
.
Biology (Basel).
2021
;
10
(
2
):
94
.
86.
Bliss
CM
,
Parsons
AJ
,
Nachbagauer
R
, et al
.
Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice
.
Mol Ther Methods Clin Dev.
2020
;
16
:
108
-
125
.
87.
Baker
GR
,
Sullam
PM
,
Levin
J
.
A simple, fluorescent method to internally label platelets suitable for physiological measurements
.
Am J Hematol.
1997
;
56
(
1
):
17
-
25
.
88.
Blessinger
SA
,
Tran
JQ
,
Jackman
RP
, et al
.
Immunodeficient mice are better for modeling the transfusion of human blood components than wild-type mice
.
PLoS One.
2020
;
15
(
7
):
e0237106
.
You do not currently have access to this content.

Sign in via your Institution

Sign In