• EuroFlow standardized multiparameter flow cytometry improves identification, quantitation, and characterization of circulating Sézary cells.

  • Immunophenotypically distinct Sézary subsets are clonally related and share a transcriptomic signature indicating impaired T-cell function.

Sézary syndrome (SS) is an aggressive leukemic form of cutaneous T-cell lymphoma with neoplastic CD4+ T cells present in skin, lymph nodes, and blood. Despite advances in therapy, prognosis remains poor, with a 5-year overall survival of 30%. The immunophenotype of Sézary cells is diverse, which hampers efficient diagnosis, sensitive disease monitoring, and accurate assessment of treatment response. Comprehensive immunophenotypic profiling of Sézary cells with an in-depth analysis of maturation and functional subsets has not been performed thus far. We immunophenotypically profiled 24 patients with SS using standardized and sensitive EuroFlow-based multiparameter flow cytometry. We accurately identified and quantified Sézary cells in blood and performed an in-depth assessment of their phenotypic characteristics in comparison with their normal counterparts in the blood CD4+ T-cell compartment. We observed inter- and intrapatient heterogeneity and phenotypic changes over time. Sézary cells exhibited phenotypes corresponding with classical and nonclassical T helper subsets with different maturation phenotypes. We combined multiparameter flow cytometry analyses with fluorescence-activated cell sorting and performed RNA sequencing studies on purified subsets of malignant Sézary cells and normal CD4+ T cells of the same patients. We confirmed pure monoclonality in Sézary subsets, compared transcriptomes of phenotypically distinct Sézary subsets, and identified novel downregulated genes, most remarkably THEMIS and LAIR1, which discriminate Sézary cells from normal residual CD4+ T cells. Together, these findings further unravel the heterogeneity of Sézary cell subpopulations within and between patients. These new data will support improved blood staging and more accurate disease monitoring.

1.
Willemze
R
,
Jaffe
ES
,
Burg
G
, et al
.
WHO-EORTC classification for cutaneous lymphomas
.
Blood.
2005
;
105
(
10
):
3768
-
3785
.
2.
Willemze
R
,
Cerroni
L
,
Kempf
W
, et al
.
The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas
.
Blood.
2019
;
133
(
16
):
1703
-
1714
.
3.
Boonk
SE
,
Zoutman
WH
,
Marie-Cardine
A
, et al
.
Evaluation of immunophenotypic and molecular biomarkers for Sézary syndrome using standard operating procedures: a multicenter study of 59 patients
.
J Invest Dermatol.
2016
;
136
(
7
):
1364
-
1372
.
4.
Lima
M
,
Almeida
J
,
dos Anjos Teixeira
M
, et al
.
Utility of flow cytometry immunophenotyping and DNA ploidy studies for diagnosis and characterization of blood involvement in CD4+ Sézary’s syndrome
.
Haematologica.
2003
;
88
(
8
):
874
-
887
.
5.
Scarisbrick
JJ
,
Whittaker
S
,
Evans
AV
, et al
.
Prognostic significance of tumor burden in the blood of patients with erythrodermic primary cutaneous T-cell lymphoma
.
Blood.
2001
;
97
(
3
):
624
-
630
.
6.
Olsen
E
,
Vonderheid
E
,
Pimpinelli
N
, et al;
ISCL/EORTC
.
Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC)
.
Blood.
2007
;
110
(
6
):
1713
-
1722
.
7.
Scarisbrick
JJ
,
Hodak
E
,
Bagot
M
, et al
.
Blood classification and blood response criteria in mycosis fungoides and Sézary syndrome using flow cytometry: recommendations from the EORTC cutaneous lymphoma task force
.
Eur J Cancer.
2018
;
93
:
47
-
56
.
8.
Vermeer
MH
,
Nicolay
JP
,
Scarisbrick
JJ
,
Zinzani
PL
.
The importance of assessing blood tumour burden in cutaneous T-cell lymphoma
.
Br J Dermatol.
2021
;
185
(
1
):
19
-
25
.
9.
Jones
D
,
Dang
NH
,
Duvic
M
,
Washington
LT
,
Huh
YO
.
Absence of CD26 expression is a useful marker for diagnosis of T-cell lymphoma in peripheral blood
.
Am J Clin Pathol.
2001
;
115
(
6
):
885
-
892
.
10.
Vonderheid
EC
,
Bernengo
MG
,
Burg
G
, et al;
ISCL
.
Update on erythrodermic cutaneous T-cell lymphoma: report of the International Society for Cutaneous Lymphomas
.
J Am Acad Dermatol.
2002
;
46
(
1
):
95
-
106
.
11.
Buus
TB
,
Willerslev-Olsen
A
,
Fredholm
S
, et al
.
Single-cell heterogeneity in Sézary syndrome
.
Blood Adv.
2018
;
2
(
16
):
2115
-
2126
.
12.
Horna
P
,
Wang
SA
,
Wolniak
KL
, et al
.
Flow cytometric evaluation of peripheral blood for suspected Sézary syndrome or mycosis fungoides: International guidelines for assay characteristics
.
Cytometry B Clin Cytom.
2020
;
100
(
2
):
142
-
155
.
13.
Roelens
M
,
Delord
M
,
Ram-Wolff
C
, et al
.
Circulating and skin-derived Sézary cells: clonal but with phenotypic plasticity
.
Blood.
2017
;
130
(
12
):
1468
-
1471
.
14.
Bagot
M
,
Moretta
A
,
Sivori
S
, et al
.
CD4(+) cutaneous T-cell lymphoma cells express the p140-killer cell immunoglobulin-like receptor
.
Blood.
2001
;
97
(
5
):
1388
-
1391
.
15.
Poszepczynska-Guigné
E
,
Schiavon
V
,
D’Incan
M
, et al
.
CD158k/KIR3DL2 is a new phenotypic marker of Sezary cells: relevance for the diagnosis and follow-up of Sezary syndrome
.
J Invest Dermatol.
2004
;
122
(
3
):
820
-
823
.
16.
Samimi
S
,
Benoit
B
,
Evans
K
, et al
.
Increased programmed death-1 expression on CD4+ T cells in cutaneous T-cell lymphoma: implications for immune suppression
.
Arch Dermatol.
2010
;
146
(
12
):
1382
-
1388
.
17.
Benoit
BM
,
Jariwala
N
,
O’Connor
G
, et al
.
CD164 identifies CD4+ T cells highly expressing genes associated with malignancy in Sézary syndrome: the Sézary signature genes, FCRL3, Tox, and miR-214
.
Arch Dermatol Res.
2017
;
309
(
1
):
11
-
19
.
18.
Wysocka
M
,
Kossenkov
AV
,
Benoit
BM
, et al
.
CD164 and FCRL3 are highly expressed on CD4+CD26- T cells in Sézary syndrome patients
.
J Invest Dermatol.
2014
;
134
(
1
):
229
-
236
.
19.
Battistella
M
,
Leboeuf
C
,
Ram-Wolff
C
, et al
.
KIR3DL2 expression in cutaneous T-cell lymphomas: expanding the spectrum for KIR3DL2 targeting
.
Blood.
2017
;
130
(
26
):
2900
-
2902
.
20.
Guenova
E
,
Ignatova
D
,
Chang
YT
, et al
.
Expression of CD164 on malignant T cells in Sézary syndrome
.
Acta Derm Venereol.
2016
;
96
(
4
):
464
-
467
.
21.
Vowels
BR
,
Cassin
M
,
Vonderheid
EC
,
Rook
AH
.
Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells
.
J Invest Dermatol.
1992
;
99
(
1
):
90
-
94
.
22.
Vowels
BR
,
Lessin
SR
,
Cassin
M
, et al
.
Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma
.
J Invest Dermatol.
1994
;
103
(
5
):
669
-
673
.
23.
Dummer
R
,
Heald
PW
,
Nestle
FO
, et al
.
Sézary syndrome T-cell clones display T-helper 2 cytokines and express the accessory factor-1 (interferon-gamma receptor beta-chain)
.
Blood.
1996
;
88
(
4
):
1383
-
1389
.
24.
Moins-Teisserenc
H
,
Daubord
M
,
Clave
E
, et al
.
CD158k is a reliable marker for diagnosis of Sézary syndrome and reveals an unprecedented heterogeneity of circulating malignant cells
.
J Invest Dermatol.
2015
;
135
(
1
):
247
-
257
.
25.
Horna
P
,
Moscinski
LC
,
Sokol
L
,
Shao
H
.
Naïve/memory T-cell phenotypes in leukemic cutaneous T-cell lymphoma: putative cell of origin overlaps disease classification
.
Cytometry B Clin Cytom.
2019
;
96
(
3
):
234
-
241
.
26.
Fierro
MT
,
Novelli
M
,
Quaglino
P
, et al
.
Heterogeneity of circulating CD4+ memory T-cell subsets in erythrodermic patients: CD27 analysis can help to distinguish cutaneous T-cell lymphomas from inflammatory erythroderma
.
Dermatology.
2008
;
216
(
3
):
213
-
221
.
27.
Campbell
JJ
,
Clark
RA
,
Watanabe
R
,
Kupper
TS
.
Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors
.
Blood.
2010
;
116
(
5
):
767
-
771
.
28.
Poglio
S
,
Prochazkova-Carlotti
M
,
Cherrier
F
, et al
.
Xenograft and cell culture models of Sézary syndrome reveal cell of origin diversity and subclonal heterogeneity
.
Leukemia.
2021
;
35(6
):1696-1709.
29.
van Dongen
JJ
,
Lhermitte
L
,
Böttcher
S
, et al;
EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708)
.
EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes
.
Leukemia.
2012
;
26
(
9
):
1908
-
1975
.
30.
Kalina
T
,
Flores-Montero
J
,
van der Velden
VH
, et al;
EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708)
.
EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols
.
Leukemia.
2012
;
26
(
9
):
1986
-
2010
.
31.
Botafogo
V
,
Pérez-Andres
M
,
Jara-Acevedo
M
, et al
.
Age distribution of multiple functionally relevant subsets of CD4+ T cells in human blood using a standardized and validated 14-color EuroFlow immune monitoring tube
.
Front Immunol.
2020
;
11
:
166
.
32.
Bland
JM
,
Altman
DG
.
Measuring agreement in method comparison studies
.
Stat Methods Med Res.
1999
;
8
(
2
):
135
-
160
.
33.
Clark
RA
,
Shackelton
JB
,
Watanabe
R
, et al
.
High-scatter T cells: a reliable biomarker for malignant T cells in cutaneous T-cell lymphoma
.
Blood.
2011
;
117
(
6
):
1966
-
1976
.
34.
Ferenczi
K
,
Fuhlbrigge
RC
,
Pinkus
J
,
Pinkus
GS
,
Kupper
TS
.
Increased CCR4 expression in cutaneous T cell lymphoma
.
J Invest Dermatol.
2002
;
119
(
6
):
1405
-
1410
.
35.
Fierro
MT
,
Comessatti
A
,
Quaglino
P
, et al
.
Expression pattern of chemokine receptors and chemokine release in inflammatory erythroderma and Sézary syndrome
.
Dermatology.
2006
;
213
(
4
):
284
-
292
.
36.
Sokolowska-Wojdylo
M
,
Wenzel
J
,
Gaffal
E
, et al
.
Circulating clonal CLA(+) and CD4(+) T cells in Sezary syndrome express the skin-homing chemokine receptors CCR4 and CCR10 as well as the lymph node-homing chemokine receptor CCR7
.
Br J Dermatol.
2005
;
152
(
2
):
258
-
264
.
37.
Narducci
MG
,
Scala
E
,
Bresin
A
, et al
.
Skin homing of Sézary cells involves SDF-1-CXCR4 signaling and down-regulation of CD26/dipeptidylpeptidase IV
.
Blood.
2006
;
107
(
3
):
1108
-
1115
.
38.
Bolotin
DA
,
Poslavsky
S
,
Mitrophanov
I
, et al
.
MiXCR: software for comprehensive adaptive immunity profiling
.
Nat Methods.
2015
;
12
(
5
):
380
-
381
.
39.
Bolotin
DA
,
Poslavsky
S
,
Davydov
AN
, et al
.
Antigen receptor repertoire profiling from RNA-seq data
.
Nat Biotechnol.
2017
;
35
(
10
):
908
-
911
.
40.
Mahnke
YD
,
Brodie
TM
,
Sallusto
F
,
Roederer
M
,
Lugli
E
.
The who’s who of T-cell differentiation: human memory T-cell subsets
.
Eur J Immunol.
2013
;
43
(
11
):
2797
-
2809
.
41.
van Doorn
R
,
Dijkman
R
,
Vermeer
MH
, et al
.
Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sézary syndrome identified by gene expression analysis
.
Cancer Res.
2004
;
64
(
16
):
5578
-
5586
.
42.
Booken
N
,
Gratchev
A
,
Utikal
J
, et al
.
Sézary syndrome is a unique cutaneous T-cell lymphoma as identified by an expanded gene signature including diagnostic marker molecules CDO1 and DNM3
.
Leukemia.
2008
;
22
(
2
):
393
-
399
.
43.
Michel
L
,
Jean-Louis
F
,
Begue
E
,
Bensussan
A
,
Bagot
M
.
Use of PLS3, Twist, CD158k/KIR3DL2, and NKp46 gene expression combination for reliable Sézary syndrome diagnosis
.
Blood.
2013
;
121
(
8
):
1477
-
1478
.
44.
Nebozhyn
M
,
Loboda
A
,
Kari
L
, et al
.
Quantitative PCR on 5 genes reliably identifies CTCL patients with 5% to 99% circulating tumor cells with 90% accuracy
.
Blood.
2006
;
107
(
8
):
3189
-
3196
.
45.
Bernengo
MG
,
Novelli
M
,
Quaglino
P
, et al
.
The relevance of the CD4+ CD26- subset in the identification of circulating Sézary cells
.
Br J Dermatol.
2001
;
144
(
1
):
125
-
135
.
46.
Qin
Y
,
Buermans
HP
,
van Kester
MS
, et al
.
Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sézary syndrome
.
J Invest Dermatol.
2012
;
132
(
5
):
1520
-
1522
.
47.
Ashburner
M
,
Ball
CA
,
Blake
JA
, et al;
The Gene Ontology Consortium
.
Gene ontology: tool for the unification of biology
.
Nat Genet.
2000
;
25
(
1
):
25
-
29
.
48.
Pulitzer
MP
,
Horna
P
,
Almeida
J
.
Sézary syndrome and mycosis fungoides: an overview, including the role of immunophenotyping
.
Cytometry B Clin Cytom.
2020
;
100
(
2
):
132
-
138
.
49.
Lee
CS
,
Ungewickell
A
,
Bhaduri
A
, et al
.
Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated lncRNAs and novel transcripts
.
Blood.
2012
;
120
(
16
):
3288
-
3297
.
50.
Borcherding
N
,
Voigt
AP
,
Liu
V
,
Link
BK
,
Zhang
W
,
Jabbari
A
.
Single-cell profiling of cutaneous T-cell lymphoma reveals underlying heterogeneity associated with disease progression
.
Clin Cancer Res.
2019
;
25
(
10
):
2996
-
3005
.
51.
Brockmeyer
C
,
Paster
W
,
Pepper
D
, et al
.
T cell receptor (TCR)-induced tyrosine phosphorylation dynamics identifies THEMIS as a new TCR signalosome component
.
J Biol Chem.
2011
;
286
(
9
):
7535
-
7547
.
52.
Prasad
M
,
Brzostek
J
,
Gautam
N
,
Balyan
R
,
Rybakin
V
,
Gascoigne
NRJ
.
Themis regulates metabolic signaling and effector functions in CD4+ T cells by controlling NFAT nuclear translocation
.
Cell Mol Immunol.
2020
.
53.
Watanabe
T
,
Yamashita
S
,
Ureshino
H
, et al
.
Targeting aberrant DNA hypermethylation as a driver of ATL leukemogenesis by using the new oral demethylating agent OR-2100
.
Blood.
2020
;
136
(
7
):
871
-
884
.
54.
Tangye
SG
,
Ma
CS
,
Brink
R
,
Deenick
EK
.
The good, the bad and the ugly: TFH cells in human health and disease
.
Nat Rev Immunol.
2013
;
13
(
6
):
412
-
426
.
You do not currently have access to this content.

Sign in via your Institution