• PROTAC design based on crystal structures of JAK2 kinase domain in complex with ruxolitinib and baricitinib.

  • PROTACs targeting JAKs are efficacious in vivo in CRLF2r ALL; the most effective degrade multiple targets, including JAKs, IKZF1, and GSPT1.

CRLF2-rearranged (CRLF2r) acute lymphoblastic leukemia (ALL) accounts for more than half of Philadelphia chromosome-like (Ph-like) ALL and is associated with a poor outcome in children and adults. Overexpression of CRLF2 results in activation of Janus kinase (JAK)-STAT and parallel signaling pathways in experimental models, but existing small molecule inhibitors of JAKs show variable and limited efficacy. Here, we evaluated the efficacy of proteolysis-targeting chimeras (PROTACs) directed against JAKs. Solving the structure of type I JAK inhibitors ruxolitinib and baricitinib bound to the JAK2 tyrosine kinase domain enabled the rational design and optimization of a series of cereblon (CRBN)-directed JAK PROTACs utilizing derivatives of JAK inhibitors, linkers, and CRBN-specific molecular glues. The resulting JAK PROTACs were evaluated for target degradation, and activity was tested in a panel of leukemia/lymphoma cell lines and xenograft models of kinase-driven ALL. Multiple PROTACs were developed that degraded JAKs and potently killed CRLF2r cell lines, the most active of which also degraded the known CRBN neosubstrate GSPT1 and suppressed proliferation of CRLF2r ALL in vivo, e.g. compound 7 (SJ988497). Although dual JAK/GSPT1-degrading PROTACs were the most potent, the development and evaluation of multiple PROTACs in an extended panel of xenografts identified a potent JAK2-degrading, GSPT1-sparing PROTAC that demonstrated efficacy in the majority of kinase-driven xenografts that were otherwise unresponsive to type I JAK inhibitors, e.g. compound 8 (SJ1008030). Together, these data show the potential of JAK-directed protein degradation as a therapeutic approach in JAK-STAT–driven ALL and highlight the interplay of JAK and GSPT1 degradation activity in this context.

1.
Roberts
KG
.
Why and how to treat Ph-like ALL?
Best Pract Res Clin Haematol.
2018
;
31
(
4
):
351
-
356
.
2.
Roberts
KG
,
Li
Y
,
Payne-Turner
D
, et al
.
Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia
.
N Engl J Med.
2014
;
371
(
11
):
1005
-
1015
.
3.
Roberts
KG
,
Morin
RD
,
Zhang
J
, et al
.
Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia
.
Cancer Cell.
2012
;
22
(
2
):
153
-
166
.
4.
Roberts
KG
,
Mullighan
CG
.
The biology of B-progenitor acute lymphoblastic leukemia
.
Cold Spring Harb Perspect Med.
2020
;
10
(
7
):
a034835
.
5.
Roberts
KG
,
Yang
YL
,
Payne-Turner
D
, et al
.
Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL
.
Blood Adv.
2017
;
1
(
20
):
1657
-
1671
.
6.
Weston
BW
,
Hayden
MA
,
Roberts
KG
, et al
.
Tyrosine kinase inhibitor therapy induces remission in a patient with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia
.
J Clin Oncol.
2013
;
31
(
25
):
e413
-
e416
.
7.
Tanasi
I
,
Ba
I
,
Sirvent
N
, et al
.
Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements
.
Blood.
2019
;
134
(
16
):
1351
-
1355
.
8.
Yoda
A
,
Yoda
Y
,
Chiaretti
S
, et al
.
Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia
.
Proc Natl Acad Sci USA.
2010
;
107
(
1
):
252
-
257
.
9.
Russell
LJ
,
Capasso
M
,
Vater
I
, et al
.
Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia
.
Blood.
2009
;
114
(
13
):
2688
-
2698
.
10.
Mullighan
CG
,
Collins-Underwood
JR
,
Phillips
LA
, et al
.
Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia
.
Nat Genet.
2009
;
41
(
11
):
1243
-
1246
.
11.
Tasian
SK
,
Doral
MY
,
Borowitz
MJ
, et al
.
Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia
.
Blood.
2012
;
120
(
4
):
833
-
842
.
12.
Jain
N
,
Jabbour
EJ
,
McKay
PZ
, et al
.
Ruxolitinib or dasatinib in combination with chemotherapy for patients with relapsed/refractory Philadelphia (Ph)-like acute lymphoblastic leukemia: a phase I-II trial
.
Blood.
2017
;
130
(
suppl 1
):
1322
.
13.
Ding
YY
,
Stern
JW
,
Jubelirer
TF
, et al
.
Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure
.
Haematologica.
2018
;
103
(
9
):
e427
-
e431
.
14.
Meyer
SC
,
Keller
MD
,
Chiu
S
, et al
.
CHZ868, a type II JAK2 inhibitor, reverses type I JAK inhibitor persistence and demonstrates efficacy in myeloproliferative neoplasms
.
Cancer Cell.
2015
;
28
(
1
):
15
-
28
.
15.
Wu
SC
,
Li
LS
,
Kopp
N
, et al
.
Activity of the type II JAK2 inhibitor CHZ868 in B cell acute lymphoblastic leukemia
.
Cancer Cell.
2015
;
28
(
1
):
29
-
41
.
16.
Raina
K
,
Crews
CM
.
Targeted protein knockdown using small molecule degraders
.
Curr Opin Chem Biol.
2017
;
39
:
46
-
53
.
17.
Hanzl
A
,
Winter
GE
.
Targeted protein degradation: current and future challenges
.
Curr Opin Chem Biol.
2020
;
56
:
35
-
41
.
18.
Fink
EC
,
Ebert
BL
.
The novel mechanism of lenalidomide activity
.
Blood.
2015
;
126
(
21
):
2366
-
2369
.
19.
Khan
S
,
Zhang
X
,
Lv
D
, et al
.
A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity
.
Nat Med.
2019
;
25
(
12
):
1938
-
1947
.
20.
Burslem
GM
,
Schultz
AR
,
Bondeson
DP
, et al
.
Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation
.
Cancer Res.
2019
;
79
(
18
):
4744
-
4753
.
21.
Lu
J
,
Qian
Y
,
Altieri
M
, et al
.
Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4
.
Chem Biol.
2015
;
22
(
6
):
755
-
763
.
22.
Piya
S
,
Mu
H
,
Bhattacharya
S
, et al
.
BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment
.
J Clin Invest.
2019
;
129
(
5
):
1878
-
1894
.
23.
Jaime-Figueroa
S
,
Buhimschi
AD
,
Toure
M
,
Hines
J
,
Crews
CM
.
Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties
.
Bioorg Med Chem Lett.
2020
;
30
(
3
):
126877
.
24.
Dobrovolsky
D
,
Wang
ES
,
Morrow
S
, et al
.
Bruton tyrosine kinase degradation as a therapeutic strategy for cancer
.
Blood.
2019
;
133
(
9
):
952
-
961
.
25.
Brand
M
,
Jiang
B
,
Bauer
S
, et al
.
Homolog-selective degradation as a strategy to probe the function of CDK6 in AML
.
Cell Chem Biol.
2019
;
26
(
2
):
300
-
306.e9
.
26.
Jiang
B
,
Wang
ES
,
Donovan
KA
, et al
.
Development of dual and selective degraders of cyclin-dependent kinases 4 and 6
.
Angew Chem Int Ed Engl.
2019
;
58
(
19
):
6321
-
6326
.
27.
De Dominici
M
,
Porazzi
P
,
Xiao
Y
, et al
.
Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs
.
Blood.
2020
;
135
(
18
):
1560
-
1573
.
28.
Burslem
GM
,
Song
J
,
Chen
X
,
Hines
J
,
Crews
CM
.
Enhancing antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion
.
J Am Chem Soc.
2018
;
140
(
48
):
16428
-
16432
.
29.
Papatzimas
JW
,
Gorobets
E
,
Maity
R
, et al
.
From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1)
.
J Med Chem.
2019
;
62
(
11
):
5522
-
5540
.
30.
Li
Y
,
Yang
J
,
Aguilar
A
, et al
.
Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression
.
J Med Chem.
2019
;
62
(
2
):
448
-
466
.
31.
Farnaby
W
,
Koegl
M
,
Roy
MJ
, et al
.
BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design
[published correction appears in Nat Chem Biol. 2019;15(8):46].
Nat Chem Biol.
2019
;
15
(
7
):
672
-
680
.
32.
Zhou
H
,
Bai
L
,
Xu
R
, et al
.
Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein
.
J Med Chem.
2019
;
62
(
24
):
11280
-
11300
.
33.
Matyskiela
ME
,
Lu
G
,
Ito
T
, et al
.
A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase
.
Nature.
2016
;
535
(
7611
):
252
-
257
.
34.
Tomeczkowski
J
,
Yakisan
E
,
Wieland
B
,
Reiter
A
,
Welte
K
,
Sykora
KW
.
Absence of G-CSF receptors and absent response to G-CSF in childhood Burkitt’s lymphoma and B-ALL cells
.
Br J Haematol.
1995
;
89
(
4
):
771
-
779
.
35.
Tomoyasu
C
,
Imamura
T
,
Tomii
T
, et al
.
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes
.
Int J Hematol.
2018
;
108
(
3
):
312
-
318
.
36.
Hurwitz
R
,
Hozier
J
,
LeBien
T
, et al
.
Characterization of a leukemic cell line of the pre-B phenotype
.
Int J Cancer.
1979
;
23
(
2
):
174
-
180
.
37.
Yasuda
T
,
Tsuzuki
S
,
Kawazu
M
, et al
.
Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults
[published correction appears in Nat Genet. 2016;48(12):1591].
Nat Genet.
2016
;
48
(
5
):
569
-
574
.
38.
Findley
HW
Jr
,
Cooper
MD
,
Kim
TH
,
Alvarado
C
,
Ragab
AH
.
Two new acute lymphoblastic leukemia cell lines with early B-cell phenotypes
.
Blood.
1982
;
60
(
6
):
1305
-
1309
.
39.
Green
MR
,
Monti
S
,
Rodig
SJ
, et al
.
Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma
.
Blood.
2010
;
116
(
17
):
3268
-
3277
.
40.
Alexander
TB
,
Gu
Z
,
Iacobucci
I
, et al
.
The genetic basis and cell of origin of mixed phenotype acute leukaemia
.
Nature.
2018
;
562
(
7727
):
373
-
379
.
41.
Boitano
AE
,
Wang
J
,
Romeo
R
, et al
.
Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
.
Science.
2010
;
329
(
5997
):
1345
-
1348
.
42.
Sprowl
JA
,
van Doorn
L
,
Hu
S
, et al
.
Conjunctive therapy of cisplatin with the OCT2 inhibitor cimetidine: influence on antitumor efficacy and systemic clearance
.
Clin Pharmacol Ther.
2013
;
94
(
5
):
585
-
592
.
43.
Bhagwat
N
,
Koppikar
P
,
Keller
M
, et al
.
Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms
.
Blood.
2014
;
123
(
13
):
2075
-
2083
.
44.
Chen
C
,
Li
F
,
Ma
MM
, et al
.
Roles of T875N somatic mutation in the activity, structural stability of JAK2 and the transformation of OCI-AML3 cells
.
Int J Biol Macromol.
2019
;
137
:
1030
-
1040
.
45.
Mullighan
CG
,
Zhang
J
,
Harvey
RC
, et al
.
JAK mutations in high-risk childhood acute lymphoblastic leukemia
.
Proc Natl Acad Sci USA.
2009
;
106
(
23
):
9414
-
9418
.
46.
Alicea-Velázquez
NL
,
Boggon
TJ
.
The use of structural biology in Janus kinase targeted drug discovery
.
Curr Drug Targets.
2011
;
12
(
4
):
546
-
555
.
47.
Novartis
.
3-(1-oxoisoindolin-2-yl)-piperidine-2,6-dione derivatives and uses thereof
;
2019
.
48.
Ishoey
M
,
Chorn
S
,
Singh
N
, et al
.
Translation termination factor GSPT1 is a phenotypically relevant off-target of heterobifunctional phthalimide degraders
.
ACS Chem Biol.
2018
;
13
(
3
):
553
-
560
.
49.
Mullighan
CG
,
Miller
CB
,
Radtke
I
, et al
.
BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros
.
Nature.
2008
;
453
(
7191
):
110
-
114
.
50.
Mullighan
CG
,
Su
X
,
Zhang
J
, et al;
Children’s Oncology Group
.
Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia
.
N Engl J Med.
2009
;
360
(
5
):
470
-
480
.
51.
Churchman
ML
,
Low
J
,
Qu
C
, et al
.
Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia
.
Cancer Cell.
2015
;
28
(
3
):
343
-
356
.
52.
Virely
C
,
Moulin
S
,
Cobaleda
C
, et al
.
Haploinsufficiency of the IKZF1 (IKAROS) tumor suppressor gene cooperates with BCR-ABL in a transgenic model of acute lymphoblastic leukemia
.
Leukemia.
2010
;
24
(
6
):
1200
-
1204
.
53.
Joshi
I
,
Yoshida
T
,
Jena
N
, et al
.
Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia
.
Nat Immunol.
2014
;
15
(
3
):
294
-
304
.
54.
Li
L
,
Xue
W
,
Shen
Z
, et al
.
A cereblon modulator CC-885 induces CRBN- and p97-dependent PLK1 degradation and synergizes with volasertib to suppress lung cancer
.
Mol Ther Oncolytics.
2020
;
18
:
215
-
225
.
55.
Laurent
AP
,
Siret
A
,
Ignacimouttou
C
, et al
.
Constitutive activation of RAS/MAPK Pathway cooperates with trisomy 21 and is therapeutically exploitable in Down syndrome B-cell leukemia
.
Clin Cancer Res.
2020
;
26
(
13
):
3307
-
3318
.
56.
Schwartzman
O
,
Savino
AM
,
Gombert
M
, et al
.
Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome
.
Proc Natl Acad Sci USA.
2017
;
114
(
20
):
E4030
-
E4039
.
57.
Tasian
SK
,
Loh
ML
,
Hunger
SP
.
Philadelphia chromosome-like acute lymphoblastic leukemia
.
Blood.
2017
;
130
(
19
):
2064
-
2072
.
58.
Jain
N
,
Roberts
KG
,
Jabbour
E
, et al
.
Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults
.
Blood.
2017
;
129
(
5
):
572
-
581
.
59.
Shah
RR
,
Redmond
JM
,
Mihut
A
, et al
.
Hi-JAK-ing the ubiquitin system: the design and physicochemical optimisation of JAK PROTACs
.
Bioorg Med Chem.
2020
;
28
(
5
):
115326
.
60.
Holmfeldt
L
,
Wei
L
,
Diaz-Flores
E
, et al
.
The genomic landscape of hypodiploid acute lymphoblastic leukemia
.
Nat Genet.
2013
;
45
(
3
):
242
-
252
.
61.
Kim
SK
,
Knight
DA
,
Jones
LR
, et al
.
JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias
.
Genes Dev.
2018
;
32
(
11-12
):
849
-
864
.
62.
Waibel
M
,
Solomon
VS
,
Knight
DA
, et al
.
Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors
.
Cell Rep.
2013
;
5
(
4
):
1047
-
1059
.
63.
Duan
Y
,
Chen
L
,
Chen
Y
,
Fan
XG
.
c-Src binds to the cancer drug ruxolitinib with an active conformation
.
PLoS One.
2014
;
9
(
9
):
e106225
.
64.
Sorrell
FJ
,
Szklarz
M
,
Abdul Azeez
KR
,
Elkins
JM
,
Knapp
S
.
Family-wide structural analysis of human numb-associated protein kinases
.
Structure.
2016
;
24
(
3
):
401
-
411
.
You do not currently have access to this content.

Sign in via your Institution