• IFNα targets homozygous JAK2V617F HSPCs more efficiently than heterozygous JAK2V617F HSPCs.

  • Heterozygous JAK2V617F HSPCs are more rapidly depleted by high doses than low doses of IFNα.

Classical BCR-ABL–negative myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells (HSCs) caused mainly by recurrent mutations in genes encoding JAK2 (JAK2), calreticulin (CALR), or the thrombopoietin receptor (MPL). Interferon α (IFNα) has demonstrated some efficacy in inducing molecular remission in MPNs. To determine factors that influence molecular response rate, we evaluated the long-term molecular efficacy of IFNα in patients with MPN by monitoring the fate of cells carrying driver mutations in a prospective observational and longitudinal study of 48 patients over more than 5 years. We measured the clonal architecture of early and late hematopoietic progenitors (84 845 measurements) and the global variant allele frequency in mature cells (409 measurements) several times per year. Using mathematical modeling and hierarchical Bayesian inference, we further inferred the dynamics of IFNα-targeted mutated HSCs. Our data support the hypothesis that IFNα targets JAK2V617F HSCs by inducing their exit from quiescence and differentiation into progenitors. Our observations indicate that treatment efficacy is higher in homozygous than heterozygous JAK2V617F HSCs and increases with high IFNα dose in heterozygous JAK2V617F HSCs. We also found that the molecular responses of CALRm HSCs to IFNα were heterogeneous, varying between type 1 and type 2 CALRm, and a high dose of IFNα correlates with worse outcomes. Our work indicates that the long-term molecular efficacy of IFNα implies an HSC exhaustion mechanism and depends on both the driver mutation type and IFNα dose.

1.
James
C
,
Ugo
V
,
Le Couédic
JP
, et al
.
A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
.
Nature.
2005
;
434
(
7037
):
1144
-
1148
.
2.
Pikman
Y
,
Lee
BH
,
Mercher
T
, et al
.
MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia
.
PLoS Med.
2006
;
3
(
7
):
e270
.
3.
Nangalia
J
,
Massie
CE
,
Baxter
EJ
, et al
.
Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2
.
N Engl J Med.
2013
;
369
(
25
):
2391
-
2405
.
4.
Klampfl
T
,
Gisslinger
H
,
Harutyunyan
AS
, et al
.
Somatic mutations of calreticulin in myeloproliferative neoplasms
.
N Engl J Med.
2013
;
369
(
25
):
2379
-
2390
.
5.
Vainchenker
W
,
Kralovics
R.
Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms
.
Blood.
2017
;
129
(
6
):
667
-
679
.
6.
Kiladjian
JJ
,
Cassinat
B
,
Chevret
S
, et al
.
Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera
.
Blood.
2008
;
112
(
8
):
3065
-
3072
.
7.
Quintás-Cardama
A
,
Abdel-Wahab
O
,
Manshouri
T
, et al
.
Molecular analysis of patients with polycythemia vera or essential thrombocythemia receiving pegylated interferon α-2a
.
Blood.
2013
;
122
(
6
):
893
-
901
.
8.
Stauffer Larsen
T
,
Iversen
KF
,
Hansen
E
, et al
.
Long term molecular responses in a cohort of Danish patients with essential thrombocythemia, polycythemia vera and myelofibrosis treated with recombinant interferon alpha
.
Leuk Res.
2013
;
37
(
9
):
1041
-
1045
.
9.
Masarova
L
,
Yin
CC
,
Cortes
JE
, et al
.
Histomorphological responses after therapy with pegylated interferon α-2a in patients with essential thrombocythemia (ET) and polycythemia vera (PV)
.
Exp Hematol Oncol.
2017
;
6
(
1
):
30
.
10.
Silver
RT.
Recombinant interferon-alpha for treatment of polycythaemia vera
.
Lancet.
1988
;
2
(
8607
):
403
.
11.
Yacoub
A
,
Mascarenhas
J
,
Kosiorek
H
, et al
.
Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea
.
Blood.
2019
;
134
(
18
):
1498
-
1509
.
12.
Gisslinger
H
,
Klade
C
,
Georgiev
P
, et al;
PROUD-PV Study Group
.
Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV): a randomised, non-inferiority, phase 3 trial and its extension study
.
Lancet Haematol.
2020
;
7
(
3
):
e196
-
e208
.
13.
Barbui
T
,
Vannucchi
AM
,
De Stefano
V
, et al
.
Ropeginterferon alfa-2b versus phlebotomy in low-risk patients with polycythaemia vera (Low-PV study): a multicentre, randomised phase 2 trial
.
Lancet Haematol
.
2021
;
8
(
3
):
e175
-
e184
.
14.
Verger
E
,
Cassinat
B
,
Chauveau
A
, et al
.
Clinical and molecular response to interferon-α therapy in essential thrombocythemia patients with CALR mutations
.
Blood.
2015
;
126
(
24
):
2585
-
2591
.
15.
Kjær
L
,
Cordua
S
,
Holmström
MO
, et al
.
Differential dynamics of CALR mutant allele burden in myeloproliferative neoplasms during interferon alfa treatment
.
PLoS One.
2016
;
11
(
10
):
e0165336
.
16.
Czech
J
,
Cordua
S
,
Weinbergerova
B
, et al
.
JAK2V617F but not CALR mutations confer increased molecular responses to interferon-α via JAK1/STAT1 activation
.
Leukemia.
2019
;
33
(
4
):
995
-
1010
.
17.
Chaligné
R
,
James
C
,
Tonetti
C
, et al
.
Evidence for MPL W515L/K mutations in hematopoietic stem cells in primitive myelofibrosis
.
Blood.
2007
;
110
(
10
):
3735
-
3743
.
18.
El-Khoury
M
,
Cabagnols
X
,
Mosca
M
, et al
.
Different impact of calreticulin mutations on human hematopoiesis in myeloproliferative neoplasms
.
Oncogene.
2020
;
39
(
31
):
5323
-
5337
.
19.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [correction published in Blood. 2016;128(3):462-463]
.
Blood.
2016
;
127
(
20
):
2391
-
2405
.
20.
Michor
F
,
Hughes
TP
,
Iwasa
Y
, et al
.
Dynamics of chronic myeloid leukaemia
.
Nature.
2005
;
435
(
7046
):
1267
-
1270
.
21.
Campario
H
,
Mosca
M
,
Aral
B
, et al
.
Impact of interferon on a triple positive polycythemia vera
.
Leukemia.
2020
;
34
(
4
):
1210
-
1212
.
22.
Mullally
A
,
Bruedigam
C
,
Poveromo
L
, et al
.
Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythemia vera
.
Blood.
2013
;
121
(
18
):
3692
-
3702
.
23.
Pietras
EM
,
Lakshminarasimhan
R
,
Techner
JM
, et al
.
Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons
.
J Exp Med.
2014
;
211
(
2
):
245
-
262
.
24.
Essers
MA
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNalpha activates dormant haematopoietic stem cells in vivo
.
Nature.
2009
;
458
(
7240
):
904
-
908
.
25.
Walter
D
,
Lier
A
,
Geiselhart
A
, et al
.
Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells
.
Nature.
2015
;
520
(
7548
):
549
-
552
.
26.
Nam
AS
,
Kim
KT
,
Chaligne
R
, et al
.
Somatic mutations and cell identity linked by Genotyping of Transcriptomes
.
Nature.
2019
;
571
(
7765
):
355
-
360
.
27.
Ianotto
J-C
,
Chauveau
A
,
Boyer-Perrard
F
, et al
.
Benefits and pitfalls of pegylated interferon-α2a therapy in patients with myeloproliferative neoplasm-associated myelofibrosis: a French Intergroup of myeloproliferative neoplasms (FIM) study
.
Haematologica.
2018
;
103
(
3
):
438
-
446
.
28.
Cassinat
B
,
Verger
E
,
Kiladjian
J-J.
Interferon alfa therapy in CALR-mutated essential thrombocythemia
.
N Engl J Med.
2014
;
371
(
2
):
188
-
189
.
29.
Silver
RT
,
Barel
AC
,
Lascu
E
, et al
.
The effect of initial molecular profile on response to recombinant interferon-α (rIFNα) treatment in early myelofibrosis
.
Cancer.
2017
;
123
(
14
):
2680
-
2687
.
30.
Yamane
A
,
Nakamura
T
,
Suzuki
H
, et al
.
Interferon-alpha 2b-induced thrombocytopenia is caused by inhibition of platelet production but not proliferation and endomitosis in human megakaryocytes
.
Blood.
2008
;
112
(
3
):
542
-
550
.
31.
Hasan
S
,
Cassinat
B
,
Droin
N
, et al
.
Use of the 46/1 haplotype to model JAK2(V617F) clonal architecture in PV patients: clonal evolution and impact of IFNα treatment
.
Leukemia.
2014
;
28
(
2
):
460
-
463
.
32.
Jäger
R
,
Gisslinger
H
,
Fuchs
E
, et al
.
Germline genetic factors influence outcome of interferon alpha therapy in polycythemia vera
.
Blood.
2020
.
33.
Pedersen
RK
,
Andersen
M
,
Knudsen
TA
, et al
.
Data-driven analysis of JAK2V617F kinetics during interferon-alpha2 treatment of patients with polycythemia vera and related neoplasms
.
Cancer Med.
2020
;
9
(
6
):
2039
-
2051
.
34.
King
KY
,
Matatall
KA
,
Shen
C-C
,
Goodell
MA
,
Swierczek
SI
,
Prchal
JT.
Comparative long-term effects of interferon α and hydroxyurea on human hematopoietic progenitor cells
.
Exp Hematol.
2015
;
43
(
10
):
912
-
918
.
35.
Austin
RJ
,
Straube
J
,
Bruedigam
C
, et al
.
Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations
.
Leukemia.
2020
;
34
(
4
):
1075
-
1089
.
36.
Rao
TN
,
Hansen
N
,
Stetka
J
, et al
.
JAK2-V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality
.
Blood.
2021
;
137
(
16
):
2139
-
2151
.
37.
Tong
J
,
Sun
T
,
Ma
S
, et al
.
Hematopoietic stem cell heterogeneity is linked to the initiation and therapeutic response of myeloproliferative neoplasms
.
Cell Stem Cell.
2021
;
28
(
3
):
502
-
513
.
38.
Hasan
S
,
Lacout
C
,
Marty
C
, et al
.
JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα
.
Blood.
2013
;
122
(
8
):
1464
-
1477
.
39.
Dagher
T
,
Maslah
N
,
Edmond
V
, et al
.
JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML
.
J Exp Med.
2021
;
218
(
2
):
e20201268
.
40.
Liu
P
,
Zhao
L
,
Loos
F
, et al
.
Immunosuppression by mutated calreticulin released from malignant cells
.
Mol Cell.
2020
;
77
(
4
):
748
-
760
.
41.
Benlabiod
C
,
Cacemiro
MDC
,
Nédélec
A
, et al
.
Calreticulin del52 and ins5 knock-in mice recapitulate different myeloproliferative phenotypes observed in patients with MPN
.
Nat Commun.
2020
;
11
(
1
):
4886
.
You do not currently have access to this content.

Sign in via your Institution