• miR-130b induces a Mll-AF4+ mixed/BCP/myeloid lineage acute leukemia propagated by LMPPs.

  • miR-128a induces a Mll-AF4+ pro-B ALL propagated by Il7r+ckit+ leukemic blasts and maintained by miR-130b.

t(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in the infant and pediatric population, yet we have little information on the molecular mechanisms responsible for disease progression. This impairs the development of therapeutic regimens that can address the aggressive phenotype and lineage plasticity of MLL-AF4–driven leukemogenesis. This study highlights novel mechanisms of disease development by focusing on 2 microRNAs (miRNAs) upregulated in leukemic blasts from primary patient samples: miR-130b and miR-128a. We show that miR-130b and miR-128a are downstream targets of MLL-AF4 and can individually drive the transition from a pre-leukemic stage to an acute leukemia in an entirely murine Mll-AF4 in vivo model. They are also required to maintain the disease phenotype. Interestingly, miR-130b overexpression led to a mixed/B-cell precursor (BCP)/myeloid leukemia, propagated by the lymphoid-primed multipotent progenitor (LMPP) population, whereas miR-128a overexpression resulted in a pro-B acute lymphoblastic leukemia (ALL), maintained by a highly expanded Il7r+c-Kit+ blast population. Molecular and phenotypic changes induced by these two miRNAs fully recapitulate the human disease, including central nervous system infiltration and activation of an MLL-AF4 expression signature. Furthermore, we identified 2 downstream targets of these miRNAs, NR2F6 and SGMS1, which in extensive validation studies are confirmed as novel tumor suppressors of MLL-AF4+ leukemia. Our integrative approach thus provides a platform for the identification of essential co-drivers of MLL-rearranged leukemias, in which the preleukemia to leukemia transition and lineage plasticity can be dissected and new therapeutic approaches can be tested.

1.
Ward
E
,
DeSantis
C
,
Robbins
A
,
Kohler
B
,
Jemal
A
.
Childhood and adolescent cancer statistics, 2014
.
CA Cancer J Clin.
2014
;
64
(
2
):
83
-
103
.
2.
Schrappe
M
,
Hunger
SP
,
Pui
C-H
, et al
.
Outcomes after induction failure in childhood acute lymphoblastic leukemia
.
N Engl J Med.
2012
;
366
(
15
):
1371
-
1381
.
3.
Krivtsov
AV
,
Feng
Z
,
Lemieux
ME
, et al
.
H3K79 methylation profiles define murine and human MLL-AF4 leukemias
.
Cancer Cell.
2008
;
14
(
5
):
355
-
368
.
4.
Wang
Z
,
Smith
KS
,
Murphy
M
,
Piloto
O
,
Somervaille
TCP
,
Cleary
ML
.
Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy
.
Nature.
2008
;
455
(
7217
):
1205
-
1209
.
5.
Dawson
MA
,
Prinjha
RK
,
Dittmann
A
, et al
.
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
.
Nature.
2011
;
478
(
7370
):
529
-
533
.
6.
Godfrey
L
,
Crump
NT
,
O’Byrne
S
, et al
.
H3K79me2/3 controls enhancer–promoter interactions and activation of the pan-cancer stem cell marker PROM1/CD133 in MLL-AF4 leukemia cells
.
Leukemia.
2021
;
35
(
1
):
90
-
106
.
7.
Kerry
J
,
Godfrey
L
,
Repapi
E
, et al
.
MLL-AF4 spreading identifies binding sites that are distinct from super-enhancers and that govern sensitivity to DOT1L inhibition in leukemia
.
Cell Rep.
2017
;
18
(
2
):
482
-
495
.
8.
Andersson
AK
,
Ma
J
,
Wang
J
, et al;
St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project
.
The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias
.
Nat Genet.
2015
;
47
(
4
):
330
-
337
.
9.
Gale
KB
,
Ford
AM
,
Repp
R
, et al
.
Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots
.
Proc Natl Acad Sci USA.
1997
;
94
(
25
):
13950
-
13954
.
10.
Greaves
M
.
In utero origins of childhood leukaemia
.
Early Hum Dev.
2005
;
81
(
1
):
123
-
129
.
11.
Malouf
C
,
Ottersbach
K
.
Molecular processes involved in B cell acute lymphoblastic leukaemia
.
Cell Mol Life Sci.
2018
;
75
(
3
):
417
-
446
.
12.
Milne
TA
.
Mouse models of MLL leukemia: recapitulating the human disease
.
Blood.
2017
;
129
(
16
):
2217
-
2223
.
13.
Lin
S
,
Luo
RT
,
Ptasinska
A
, et al
.
Instructive role of MLL-fusion proteins revealed by a model of t(4;11) pro-B acute lymphoblastic leukemia
.
Cancer Cell.
2016
;
30
(
5
):
737
-
749
.
14.
Barrett
NA
,
Malouf
C
,
Kapeni
C
, et al
.
Mll-AF4 confers enhanced self-renewal and lymphoid potential during a restricted window in development
.
Cell Rep.
2016
;
16
(
4
):
1039
-
1054
.
15.
Malouf
C
,
Ottersbach
K
.
The fetal liver lymphoid-primed multipotent progenitor provides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia
.
Haematologica.
2018
;
103
(
12
):
e571
-
e574
.
16.
Malouf
C
,
Ottersbach
K
.
Fetal liver Mll-AF4+ hematopoietic stem and progenitor cells respond directly to poly(I:C), but not to a single maternal immune activation
.
Exp Hematol.
2019
;
76
:
49
-
59
.
17.
Chung
SS
,
Hu
W
,
Park
CY
.
The role of MicroRNAs in hematopoietic stem cell and leukemic stem cell function
.
Ther Adv Hematol.
2011
;
2
(
5
):
317
-
334
.
18.
Macfarlane
L-A
,
Murphy
PR
.
MicroRNA: biogenesis, function and role in cancer
.
Curr Genomics.
2010
;
11
(
7
):
537
-
561
.
19.
Yendamuri
S
,
Calin
GA
.
The role of microRNA in human leukemia: a review
.
Leukemia.
2009
;
23
(
7
):
1257
-
1263
.
20.
Williams
MTS
,
Yousafzai
YM
,
Elder
A
, et al
.
The ability to cross the blood-cerebrospinal fluid barrier is a generic property of acute lymphoblastic leukemia blasts
.
Blood.
2016
;
127
(
16
):
1998
-
2006
.
21.
Dvinge
H
,
Bertone
P
.
HTqPCR: high-throughput analysis and visualization of quantitative real-time PCR data in R
.
Bioinformatics.
2009
;
25
(
24
):
3325
-
3326
.
22.
Godfrey
L
,
Crump
NT
,
Thorne
R
, et al
.
DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation
.
Nat Commun.
2019
;
10
(
1
):
2803
.
23.
Metzler
M
,
Forster
A
,
Pannell
R
, et al
.
A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology
.
Oncogene.
2006
;
25
(
22
):
3093
-
3103
.
24.
Chen
MJ
,
Yokomizo
T
,
Zeigler
BM
,
Dzierzak
E
,
Speck
NA
.
Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter
.
Nature.
2009
;
457
(
7231
):
887
-
891
.
25.
Thomas
M
,
Gessner
A
,
Vornlocher
H-P
,
Hadwiger
P
,
Greil
J
,
Heidenreich
O
.
Targeting MLL-AF4 with short interfering RNAs inhibits clonogenicity and engraftment of t(4;11)-positive human leukemic cells
.
Blood.
2005
;
106
(
10
):
3559
-
3566
.
26.
Sinclair
PB
,
Blair
HH
,
Ryan
SL
, et al
.
Dynamic clonal progression in xenografts of acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21
.
Haematologica.
2018
;
103
(
4
):
634
-
644
.
27.
Agarwal
V
,
Bell
GW
,
Nam
J-W
,
Bartel
DP
.
Predicting effective microRNA target sites in mammalian mRNAs
.
eLife.
2015
;
4
:
e05005
.
28.
Krek
A
,
Grün
D
,
Poy
MN
, et al
.
Combinatorial microRNA target predictions
.
Nat Genet.
2005
;
37
(
5
):
495
-
500
.
29.
Babicki
S
,
Arndt
D
,
Marcu
A
, et al
.
Heatmapper: web-enabled heat mapping for all
.
Nucleic Acids Res.
2016
;
44
(
W1
):
W147
-
W153
.
30.
Witkowski
MT
,
Dolgalev
I
,
Evensen
NA
, et al
.
Extensive remodeling of the immune microenvironment in B cell acute lymphoblastic leukemia
.
Cancer Cell.
2020
;
37
(
6
):
867
-
882.e12
.
31.
Rouce
RH
,
Shaim
H
,
Sekine
T
, et al
.
The TGF-β/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia
.
Leukemia.
2016
;
30
(
4
):
800
-
811
.
32.
Schwartz
S
,
Rieder
H
,
Schläger
B
,
Burmeister
T
,
Fischer
L
,
Thiel
E
.
Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10 (-)/CD24(-)/CD65s(+)/CD15(+) B-cell phenotype
.
Leukemia.
2003
;
17
(
8
):
1589
-
1595
.
33.
Bardini
M
,
Woll
PS
,
Corral
L
, et al
.
Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement
.
Leukemia.
2015
;
29
(
1
):
38
-
50
.
34.
Popovic
R
,
Riesbeck
LE
,
Velu
CS
, et al
.
Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization
.
Blood.
2009
;
113
(
14
):
3314
-
3322
.
35.
Lechman
ER
,
Gentner
B
,
van Galen
P
, et al
.
Attenuation of miR-126 activity expands HSC in vivo without exhaustion
.
Cell Stem Cell.
2012
;
11
(
6
):
799
-
811
.
36.
Godfrey
L
,
Kerry
J
,
Thorne
R
, et al
.
MLL-AF4 binds directly to a BCL-2 specific enhancer and modulates H3K27 acetylation
.
Exp Hematol.
2017
;
47
:
64
-
75
.
37.
Agraz-Doblas
A
,
Bueno
C
,
Bashford-Rogers
R
, et al
.
Unravelling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis
.
Haematologica.
2019
;
104
(
6
):
1176
-
1188
.
38.
Lin
S
,
Luo
RT
,
Shrestha
M
,
Thirman
MJ
,
Mulloy
JC
.
The full transforming capacity of MLL-Af4 is interlinked with lymphoid lineage commitment
.
Blood.
2017
;
130
(
7
):
903
-
907
.
39.
Lu
B
,
Klingbeil
O
,
Tarumoto
Y
, et al
.
A transcription factor addiction in leukemia imposed by the MLL promoter sequence
.
Cancer Cell.
2018
;
34
(
6
):
970
-
981.e8
.
40.
Wilkinson
AC
,
Ballabio
E
,
Geng
H
, et al
.
RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction
.
Cell Rep.
2013
;
3
(
1
):
116
-
127
.
41.
Muñoz-López
A
,
Romero-Moya
D
,
Prieto
C
, et al
.
Development refractoriness of MLL-rearranged human B cell acute leukemias to reprogramming into pluripotency
.
Stem Cell Reports.
2016
;
7
(
4
):
602
-
618
.
42.
Deshpande
AJ
,
Deshpande
A
,
Sinha
AU
, et al
.
AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes
.
Cancer Cell.
2014
;
26
(
6
):
896
-
908
.
43.
Mandal
M
,
Hamel
KM
,
Maienschein-Cline
M
, et al
.
Histone reader BRWD1 targets and restricts recombination to the Igk locus
.
Nat Immunol.
2015
;
16
(
10
):
1094
-
1103
.
44.
Smith
L-L
,
Yeung
J
,
Zeisig
BB
, et al
.
Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells
.
Cell Stem Cell.
2011
;
8
(
6
):
649
-
662
.
45.
Yang
Y
,
Chen
Y
,
Saha
MN
, et al
.
Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma
.
Leukemia.
2015
;
29
(
3
):
715
-
726
.
46.
Liu
H
,
Westergard
TD
,
Cashen
A
, et al
.
Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4
.
Cancer Cell.
2014
;
25
(
4
):
530
-
542
.
47.
Hirabayashi
S
,
Ohki
K
,
Nakabayashi
K
, et al;
Tokyo Children’s Cancer Study Group (TCCSG)
.
ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype
.
Haematologica.
2017
;
102
(
1
):
118
-
129
.
48.
Ding
T
,
Li
Z
,
Hailemariam
T
, et al
.
SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis
.
J Lipid Res.
2008
;
49
(
2
):
376
-
385
.
49.
Mi
S
,
Lu
J
,
Sun
M
, et al
.
MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia
.
Proc Natl Acad Sci USA.
2007
;
104
(
50
):
19971
-
19976
.
50.
Pui
CH
,
Frankel
LS
,
Carroll
AJ
, et al
.
Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): a collaborative study of 40 cases
.
Blood.
1991
;
77
(
3
):
440
-
447
.
51.
Carulli
G
,
Marini
A
,
Ferreri
MI
, et al
.
B-cell acute lymphoblastic leukemia with t(4;11)(q21;q23) in a young woman: evolution into mixed phenotype acute leukemia with additional chromosomal aberrations in the course of therapy
.
Hematol Rep.
2012
;
4
(
3
):
e15
.
52.
Stass
S
,
Mirro
J
,
Melvin
S
,
Pui
CH
,
Murphy
SB
,
Williams
D
.
Lineage switch in acute leukemia
.
Blood.
1984
;
64
(
3
):
701
-
706
.
53.
Gardner
R
,
Wu
D
,
Cherian
S
, et al
.
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
.
Blood.
2016
;
127
(
20
):
2406
-
2410
.
54.
Jacoby
E
,
Nguyen
SM
,
Fountaine
TJ
, et al
.
CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity
.
Nat Commun.
2016
;
7
:
12320
.
55.
McClellan
JS
,
Majeti
R
.
The cancer stem cell model: B cell acute lymphoblastic leukaemia breaks the mould
.
EMBO Mol Med.
2013
;
5
(
1
):
7
-
9
.
You do not currently have access to this content.

Sign in via your Institution

Sign In