• Functional EpoR is expressed in subsets of tissue macrophages and hematopoietic cells.

  • EpoR-tdTomato-Cre mouse line provides a powerful tool for identification of EpoR expression and gene manipulation in EpoR-expressing cells.

The erythropoietin receptor (EpoR) has traditionally been thought of as an erythroid-specific gene. Notably, accumulating evidence suggests that EpoR is expressed well beyond erythroid cells. However, the expression of EpoR in non-erythroid cells has been controversial. In this study, we generated EpoR-tdTomato-Cre mice and used them to examine the expression of EpoR in tissue macrophages and hematopoietic cells. We show that in marked contrast to the previously available EpoR-eGFPcre mice, in which a very weak eGFP signal was detected in erythroid cells, tdTomato was readily detectable in both fetal liver (FL) and bone marrow (BM) erythroid cells at all developmental stages and exhibited dynamic changes during erythropoiesis. Consistent with our recent finding that erythroblastic island (EBI) macrophages are characterized by the expression of EpoR, tdTomato was readily detected in both FL and BM EBI macrophages. Moreover, tdTomato was also detected in subsets of hematopoietic stem cells, progenitors, megakaryocytes, and B cells in BM as well as in spleen red pulp macrophages and liver Kupffer cells. The expression of EpoR was further shown by the EpoR-tdTomato-Cre–mediated excision of the floxed STOP sequence. Importantly, EPO injection selectively promoted proliferation of the EpoR-expressing cells and induced erythroid lineage bias during hematopoiesis. Our findings imply broad roles for EPO/EpoR in hematopoiesis that warrant further investigation. The EpoR-tdTomato-Cre mouse line provides a powerful tool to facilitate future studies on EpoR expression and regulation in various non-hematopoietic cells and to conditionally manipulate gene expression in EpoR-expressing cells for functional studies.

1.
Lin
CS
,
Lim
SK
,
D’Agati
V
,
Costantini
F.
Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis
.
Genes Dev.
1996
;
10
(
2
):
154
-
164
.
2.
Malik
J
,
Kim
AR
,
Tyre
KA
,
Cherukuri
AR
,
Palis
J.
Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts
.
Haematologica.
2013
;
98
(
11
):
1778
-
1787
.
3.
Wu
H
,
Liu
X
,
Jaenisch
R
,
Lodish
HF.
Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor
.
Cell.
1995
;
83
(
1
):
59
-
67
.
4.
Noguchi
CT
,
Wang
L
,
Rogers
HM
,
Teng
R
,
Jia
Y.
Survival and proliferative roles of erythropoietin beyond the erythroid lineage
.
Expert Rev Mol Med.
2008
;
10
:
e36
.
5.
Wang
L
,
Di
L
,
Noguchi
CT.
Erythropoietin, a novel versatile player regulating energy metabolism beyond the erythroid system
.
Int J Biol Sci.
2014
;
10
(
8
):
921
-
939
.
6.
Suresh
S
,
Rajvanshi
PK
,
Noguchi
CT.
The many facets of erythropoietin physiologic and metabolic response
.
Front Physiol.
2020
;
10
:
1534
.
7.
Shiozawa
Y
,
Jung
Y
,
Ziegler
AM
, et al
.
Erythropoietin couples hematopoiesis with bone formation
.
PLoS One.
2010
;
5
(
5
):
e10853
.
8.
Grover
A
,
Mancini
E
,
Moore
S
, et al
.
Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate
.
J Exp Med.
2014
;
211
(
2
):
181
-
188
.
9.
Ishibashi
T
,
Koziol
JA
,
Burstein
SA.
Human recombinant erythropoietin promotes differentiation of murine megakaryocytes in vitro
.
J Clin Invest.
1987
;
79
(
1
):
286
-
289
.
10.
Kimata
H
,
Yoshida
A
,
Ishioka
C
,
Mikawa
H.
Effect of recombinant human erythropoietin on human IgE production in vitro
.
Clin Exp Immunol.
1991
;
83
(
3
):
483
-
487
.
11.
Kimata
H
,
Yoshida
A
,
Ishioka
C
,
Masuda
S
,
Sasaki
R
,
Mikawa
H.
Human recombinant erythropoietin directly stimulates B cell immunoglobulin production and proliferation in serum-free medium
.
Clin Exp Immunol.
1991
;
85
(
1
):
151
-
156
.
12.
Luo
B
,
Gan
W
,
Liu
Z
, et al
.
Erythropoeitin signaling in macrophages promotes dying cell clearance and immune tolerance
.
Immunity.
2016
;
44
(
2
):
287
-
302
.
13.
Kertesz
N
,
Wu
J
,
Chen
TH
,
Sucov
HM
,
Wu
H.
The role of erythropoietin in regulating angiogenesis
.
Dev Biol.
2004
;
276
(
1
):
101
-
110
.
14.
Yasuda
Y
,
Masuda
S
,
Chikuma
M
,
Inoue
K
,
Nagao
M
,
Sasaki
R.
Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis
.
J Biol Chem.
1998
;
273
(
39
):
25381
-
25387
.
15.
Fischer
HS
,
Reibel
NJ
,
Bührer
C
,
Dame
C.
Prophylactic early erythropoietin for neuroprotection in preterm infants: a meta-analysis
.
Pediatrics.
2017
;
139
(
5
):
e20164317
.
16.
Ostrowski
D
,
Ehrenreich
H
,
Heinrich
R.
Erythropoietin promotes survival and regeneration of insect neurons in vivo and in vitro
.
Neuroscience.
2011
;
188
:
95
-
108
.
17.
Miljus
N
,
Heibeck
S
,
Jarrar
M
, et al
.
Erythropoietin-mediated protection of insect brain neurons involves JAK and STAT but not PI3K transduction pathways
.
Neuroscience.
2014
;
258
:
218
-
227
.
18.
Ostrowski
D
,
Heinrich
R.
Alternative erythropoietin receptors in the nervous system
.
J Clin Med.
2018
;
7
(
2
):
E24
.
19.
Iwai
M
,
Cao
G
,
Yin
W
,
Stetler
RA
,
Liu
J
,
Chen
J.
Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats
.
Stroke.
2007
;
38
(
10
):
2795
-
2803
.
20.
Shingo
T
,
Sorokan
ST
,
Shimazaki
T
,
Weiss
S.
Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells
.
J Neurosci.
2001
;
21
(
24
):
9733
-
9743
.
21.
Liu
C
,
Shen
K
,
Liu
Z
,
Noguchi
CT.
Regulated human erythropoietin receptor expression in mouse brain
.
J Biol Chem.
1997
;
272
(
51
):
32395
-
32400
.
22.
Yu
X
,
Shacka
JJ
,
Eells
JB
, et al
.
Erythropoietin receptor signalling is required for normal brain development
.
Development.
2002
;
129
(
2
):
505
-
516
.
23.
Anagnostou
A
,
Liu
Z
,
Steiner
M
, et al
.
Erythropoietin receptor mRNA expression in human endothelial cells
.
Proc Natl Acad Sci U S A.
1994
;
91
(
9
):
3974
-
3978
.
24.
Heinrich
AC
,
Pelanda
R
,
Klingmüller
U.
A mouse model for visualization and conditional mutations in the erythroid lineage
.
Blood.
2004
;
104
(
3
):
659
-
666
.
25.
Jegalian
AG
,
Acurio
A
,
Dranoff
G
,
Wu
H.
Erythropoietin receptor haploinsufficiency and in vivo interplay with granulocyte-macrophage colony-stimulating factor and interleukin 3
.
Blood.
2002
;
99
(
7
):
2603
-
2605
.
26.
Kim
JH
,
Lee
SR
,
Li
LH
, et al
.
High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice
.
PLoS One.
2011
;
6
(
4
):
e18556
.
27.
Szymczak
AL
,
Workman
CJ
,
Wang
Y
, et al
.
Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector
[published corrections appear in Nat Biotechnol. 2004;22(12):1590 and Nat Biotechnol. 2004;22(6):760].
Nat Biotechnol.
2004
;
22
(
5
):
589
-
594
.
28.
Srinivas
S
,
Watanabe
T
,
Lin
CS
, et al
.
Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
.
BMC Dev Biol.
2001
;
1
(
1
):
4
.
29.
Madisen
L
,
Zwingman
TA
,
Sunkin
SM
, et al
.
A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
.
Nat Neurosci.
2010
;
13
(
1
):
133
-
140
.
30.
Lee
HY
,
Gao
X
,
Barrasa
MI
, et al
.
PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal
.
Nature.
2015
;
522
(
7557
):
474
-
477
.
31.
Flygare
J
,
Rayon Estrada
V
,
Shin
C
,
Gupta
S
,
Lodish
HF.
HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal
.
Blood.
2011
;
117
(
12
):
3435
-
3444
.
32.
Chen
K
,
Liu
J
,
Heck
S
,
Chasis
JA
,
An
X
,
Mohandas
N.
Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis
.
Proc Natl Acad Sci U S A.
2009
;
106
(
41
):
17413
-
17418
.
33.
Liu
J
,
Zhang
J
,
Ginzburg
Y
, et al
.
Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered erythropoiesis
.
Blood.
2013
;
121
(
8
):
e43
-
e49
.
34.
Li
W
,
Wang
Y
,
Zhao
H
, et al
.
Identification and transcriptome analysis of erythroblastic island macrophages
.
Blood.
2019
;
134
(
5
):
480
-
491
.
35.
Matsumura-Takeda
K
,
Sogo
S
,
Isakari
Y
, et al
.
CD41+/CD45+ cells without acetylcholinesterase activity are immature and a major megakaryocytic population in murine bone marrow
.
Stem Cells.
2007
;
25
(
4
):
862
-
870
.
36.
Kohyama
M
,
Ise
W
,
Edelson
BT
, et al
.
Role for Spi-C in the development of red pulp macrophages and splenic iron homeostasis
.
Nature.
2009
;
457
(
7227
):
318
-
321
.
37.
Taylor
PR
,
Reid
DM
,
Heinsbroek
SE
,
Brown
GD
,
Gordon
S
,
Wong
SY.
Dectin-2 is predominantly myeloid restricted and exhibits unique activation-dependent expression on maturing inflammatory monocytes elicited in vivo
.
Eur J Immunol.
2005
;
35
(
7
):
2163
-
2174
.
38.
Krenkel
O
,
Tacke
F.
Liver macrophages in tissue homeostasis and disease
.
Nat Rev Immunol.
2017
;
17
(
5
):
306
-
321
.
39.
Singbrant
S
,
Russell
MR
,
Jovic
T
, et al
.
Erythropoietin couples erythropoiesis, B-lymphopoiesis, and bone homeostasis within the bone marrow microenvironment
.
Blood.
2011
;
117
(
21
):
5631
-
5642
.
40.
Seu
KG
,
Papoin
J
,
Fessler
R
, et al
.
Unraveling macrophage heterogeneity in erythroblastic islands
.
Front Immunol.
2017
;
8
:
1140
.
41.
Xu
J
,
Peng
C
,
Sankaran
VG
, et al
.
Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing
.
Science.
2011
;
334
(
6058
):
993
-
996
.
42.
Kerenyi
MA
,
Shao
Z
,
Hsu
YJ
, et al
.
Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation
.
eLife.
2013
;
2
:
e00633
.
43.
Sankaran
VG
,
Orkin
SH
,
Walkley
CR.
Rb intrinsically promotes erythropoiesis by coupling cell cycle exit with mitochondrial biogenesis
.
Genes Dev.
2008
;
22
(
4
):
463
-
475
.
44.
Dumitriu
B
,
Patrick
MR
,
Petschek
JP
, et al
.
Sox6 cell-autonomously stimulates erythroid cell survival, proliferation, and terminal maturation and is thereby an important enhancer of definitive erythropoiesis during mouse development
.
Blood.
2006
;
108
(
4
):
1198
-
1207
.
45.
Maetens
M
,
Doumont
G
,
Clercq
SD
, et al
.
Distinct roles of Mdm2 and Mdm4 in red cell production
.
Blood.
2007
;
109
(
6
):
2630
-
2633
.
46.
Alhashem
YN
,
Vinjamur
DS
,
Basu
M
,
Klingmüller
U
,
Gaensler
KM
,
Lloyd
JA.
Transcription factors KLF1 and KLF2 positively regulate embryonic and fetal beta-globin genes through direct promoter binding
.
J Biol Chem.
2011
;
286
(
28
):
24819
-
24827
.
47.
Xu
J
,
Bauer
DE
,
Kerenyi
MA
, et al
.
Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A
.
Proc Natl Acad Sci U S A.
2013
;
110
(
16
):
6518
-
6523
.
48.
Mullally
A
,
Poveromo
L
,
Schneider
RK
,
Al-Shahrour
F
,
Lane
SW
,
Ebert
BL.
Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythemia vera
.
Blood.
2012
;
120
(
1
):
166
-
172
.
49.
Ma
S
,
Cahalan
S
,
LaMonte
G
, et al
.
Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection
.
Cell.
2018
;
173
(
2
):
443
-
455.e12
.
50.
Liu
X
,
Zhang
Y
,
Ni
M
, et al
.
Regulation of mitochondrial biogenesis in erythropoiesis by mTORC1-mediated protein translation
.
Nat Cell Biol.
2017
;
19
(
6
):
626
-
638
.
51.
Broudy
VC
,
Lin
N
,
Brice
M
,
Nakamoto
B
,
Papayannopoulou
T.
Erythropoietin receptor characteristics on primary human erythroid cells
.
Blood.
1991
;
77
(
12
):
2583
-
2590
.
52.
Muzumdar
MD
,
Tasic
B
,
Miyamichi
K
,
Li
L
,
Luo
L.
A global double-fluorescent Cre reporter mouse
.
Genesis.
2007
;
45
(
9
):
593
-
605
.
53.
Tosello-Trampont
AC
,
Landes
SG
,
Nguyen
V
,
Novobrantseva
TI
,
Hahn
YS.
Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-α production
.
J Biol Chem.
2012
;
287
(
48
):
40161
-
40172
.
54.
Wang
J
,
Hayashi
Y
,
Yokota
A
, et al
.
Expansion of EPOR-negative macrophages besides erythroblasts by elevated EPOR signaling in erythrocytosis mouse models
.
Haematologica.
2018
;
103
(
1
):
40
-
50
.
55.
Salic
A
,
Mitchison
TJ.
A chemical method for fast and sensitive detection of DNA synthesis in vivo
.
Proc Natl Acad Sci U S A.
2008
;
105
(
7
):
2415
-
2420
.
56.
Suzuki
N
,
Ohneda
O
,
Takahashi
S
, et al
.
Erythroid-specific expression of the erythropoietin receptor rescued its null mutant mice from lethality
.
Blood.
2002
;
100
(
7
):
2279
-
2288
.
57.
Wu
H
,
Lee
SH
,
Gao
J
,
Liu
X
,
Iruela-Arispe
ML.
Inactivation of erythropoietin leads to defects in cardiac morphogenesis
.
Development.
1999
;
126
(
16
):
3597
-
3605
.
58.
Yu
X
,
Lin
CS
,
Costantini
F
,
Noguchi
CT.
The human erythropoietin receptor gene rescues erythropoiesis and developmental defects in the erythropoietin receptor null mouse
.
Blood.
2001
;
98
(
2
):
475
-
477
.
59.
Suresh
S
,
de Castro
LF
,
Dey
S
,
Robey
PG
,
Noguchi
CT.
Erythropoietin modulates bone marrow stromal cell differentiation
.
Bone Res.
2019
;
7
(
1
):
21
.
60.
Anagnostou
A
,
Lee
ES
,
Kessimian
N
,
Levinson
R
,
Steiner
M.
Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells
.
Proc Natl Acad Sci U S A.
1990
;
87
(
15
):
5978
-
5982
.
61.
Ogilvie
M
,
Yu
X
,
Nicolas-Metral
V
, et al
.
Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts
.
J Biol Chem.
2000
;
275
(
50
):
39754
-
39761
.
62.
Teng
R
,
Gavrilova
O
,
Suzuki
N
, et al
.
Disrupted erythropoietin signalling promotes obesity and alters hypothalamus proopiomelanocortin production
.
Nat Commun.
2011
;
2
(
1
):
520
.
63.
Chen
Y
,
Xiang
J
,
Qian
F
, et al
.
Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation
.
Blood.
2020
;
136
(
2
):
235
-
246
.
You do not currently have access to this content.

Sign in via your Institution

Sign In