• WGS describes IgM-MM as predominantly a pre–germinal center malignancy and provides molecular differences to WM.

  • High BCL2/BCL2L1 ratio and high expression of CD20 and Bruton tyrosine kinase in IgM-MM provide potential for targeted therapeutic options.

Immunoglobulin M (IgM) multiple myeloma (MM) is a rare disease subgroup. Its differentiation from other IgM-producing gammopathies such as Waldenström macroglobulinemia (WM) has not been well characterized but is essential for proper risk assessment and treatment. In this study, we investigated genomic and transcriptomic characteristics of IgM-MM samples using whole-genome and transcriptome sequencing to identify differentiating characteristics from non–IgM-MM and WM. Our results suggest that IgM-MM shares most of its defining structural variants and gene-expression profiling with MM, but has some key characteristics, including t(11;14) translocation, chromosome 6 and 13 deletion as well as distinct molecular and transcription-factor signatures. Furthermore, IgM-MM translocations were predominantly characterized by VHDHJH recombination-induced breakpoints, as opposed to the usual class-switching region breakpoints; coupled with its lack of class switching, these data favor a pre–germinal center origin. Finally, we found elevated expression of clinically relevant targets, including CD20 and Bruton tyrosine kinase, as well as high BCL2/BCL2L1 ratio in IgM-MM, providing potential for targeted therapeutics.

1.
Siegel
RL
,
Miller
KD
,
Jemal
A.
Cancer statistics, 2016
.
CA Cancer J Clin.
2016
;
66
(
1
):
7
-
30
.
2.
Schuster
SR
,
Rajkumar
SV
,
Dispenzieri
A
, et al
.
IgM multiple myeloma: disease definition, prognosis, and differentiation from Waldenstrom’s macroglobulinemia
.
Am J Hematol.
2010
;
85
(
11
):
853
-
855
.
3.
Corre
J
,
Munshi
N
,
Avet-Loiseau
H.
Genetics of multiple myeloma: another heterogeneity level?
Blood.
2015
;
125
(
12
):
1870
-
1876
.
4.
Hunter
ZR
,
Xu
L
,
Yang
G
, et al
.
The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis
.
Blood.
2014
;
123
(
11
):
1637
-
1646
.
5.
Aktas Samur
A
,
Minvielle
S
,
Shammas
M
, et al
.
Deciphering the chronology of copy number alterations in Multiple Myeloma
.
Blood Cancer J.
2019
;
9
(
4
):
39
.
6.
P
aiva
B
,
Corchete
LA
,
Vidriales
MB
, et al
.
The cellular origin and malignant transformation of Waldenström macroglobulinemia
.
Blood.
2015
;
125
(
15
):
2370
-
2380
.
7.
Walker
BA
,
Mavrommatis
K
,
Wardell
CP
, et al
.
Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma [published correction appears in Blood. 2018;132(13):1461]
.
Blood.
2018
;
132
(
6
):
587
-
597
.
8.
Bolli
N
,
Avet-Loiseau
H
,
Wedge
DC
, et al
.
Heterogeneity of genomic evolution and mutational profiles in multiple myeloma
.
Nat Commun.
2014
;
5
(
1
):
2997
.
9.
Treon
SP
,
Xu
L
,
Hunter
Z.
MYD88 mutations and response to ibrutinib in Waldenström’s macroglobulinemia
.
N Engl J Med.
2015
;
373
(
6
):
584
-
586
.
10.
Matthias
P
,
Rolink
AG.
Transcriptional networks in developing and mature B cells
.
Nat Rev Immunol.
2005
;
5
(
6
):
497
-
508
.
11.
Nutt
SL
,
Hodgkin
PD
,
Tarlinton
DM
,
Corcoran
LM.
The generation of antibody-secreting plasma cells
.
Nat Rev Immunol.
2015
;
15
(
3
):
160
-
171
.
12.
Shapiro-Shelef
M
,
Calame
K.
Regulation of plasma-cell development
.
Nat Rev Immunol.
2005
;
5
(
3
):
230
-
242
.
13.
Sahota
SS
,
Babbage
G
,
Weston-Bell
NJ.
CD27 in defining memory B-cell origins in Waldenström’s macroglobulinemia
.
Clin Lymphoma Myeloma.
2009
;
9
(
1
):
33
-
35
.
14.
Stone
MJ
,
Pascual
V.
Pathophysiology of Waldenström’s macroglobulinemia
.
Haematologica.
2010
;
95
(
3
):
359
-
364
.
15.
Braggio
E
,
Dogan
A
,
Keats
JJ
, et al
.
Genomic analysis of marginal zone and lymphoplasmacytic lymphomas identified common and disease-specific abnormalities
.
Mod Pathol.
2012
;
25
(
5
):
651
-
660
.
16.
Zhan
F
,
Huang
Y
,
Colla
S
, et al
.
The molecular classification of multiple myeloma
.
Blood.
2006
;
108
(
6
):
2020
-
2028
.
17.
Walker
BA
,
Wardell
CP
,
Johnson
DC
, et al
.
Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells
.
Blood.
2013
;
121
(
17
):
3413
-
3419
.
18.
Varettoni
M
,
Zibellini
S
,
Arcaini
L
, et al
.
MYD88 (L265P) mutation is an independent risk factor for progression in patients with IgM monoclonal gammopathy of undetermined significance
.
Blood
.
2013
;
122
(
13
):
2284
-
2285
.
19.
Robillard
N
,
Avet-Loiseau
H
,
Garand
R
, et al
.
CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma
.
Blood.
2003
;
102
(
3
):
1070
-
1071
.
20.
Dimopoulos
MA
,
Tedeschi
A
,
Trotman
J
, et al;
iNNOVATE Study Group and the European Consortium for Waldenström’s Macroglobulinemia
.
Phase 3 trial of ibrutinib plus rituximab in Waldenström’s macroglobulinemia
.
N Engl J Med.
2018
;
378
(
25
):
2399
-
2410
.
21.
Richardson
PG
,
Bensinger
WI
,
Huff
CA
, et al
.
Ibrutinib alone or with dexamethasone for relapsed or relapsed and refractory multiple myeloma: phase 2 trial results
.
Br J Haematol.
2018
;
180
(
6
):
821
-
830
.
22.
Kumar
SK
,
Harrison
SJ
,
Cavo
M
, et al
.
Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial
.
Lancet Oncol.
2020
;
21
(
12
):
1630
-
1642
.
23.
Punnoose
EA
,
Leverson
JD
,
Peale
F
, et al
.
Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models
.
Mol Cancer Ther.
2016
;
15
(
5
):
1132
-
1144
.
24.
van de Donk
NWCJ
,
Richardson
PG
,
Malavasi
F.
CD38 antibodies in multiple myeloma: back to the future
.
Blood.
2018
;
131
(
1
):
13
-
29
.
25.
Cho
SF
,
Anderson
KC
,
Tai
YT.
Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy
.
Front Immunol.
2018
;
9
:
1821
.
You do not currently have access to this content.

Sign in via your Institution

Sign In