• KIN-8194 is a highly potent dual HCK and BTK inhibitor with superior antitumor activity over ibrutinib in MYD88-mutated B-cell lymphomas.

  • KIN-8194 overcomes ibrutinib resistance with a survival benefit in TMD-8 ABC DLBCL xenografted mice and synergizes with venetoclax.

Activating mutations in MYD88 promote malignant cell growth and survival through hematopoietic cell kinase (HCK)–mediated activation of Bruton tyrosine kinase (BTK). Ibrutinib binds to BTKCys481 and is active in B-cell malignancies driven by mutated MYD88. Mutations in BTKCys481, particularly BTKCys481Ser, are common in patients with acquired ibrutinib resistance. We therefore performed an extensive medicinal chemistry campaign and identified KIN-8194 as a novel dual inhibitor of HCK and BTK. KIN-8194 showed potent and selective in vitro killing of MYD88-mutated lymphoma cells, including ibrutinib-resistant BTKCys481Ser-expressing cells. KIN-8194 demonstrated excellent bioavailability and pharmacokinetic parameters, with good tolerance in rodent models at pharmacologically achievable and active doses. Pharmacodynamic studies showed sustained inhibition of HCK and BTK for 24 hours after single oral administration of KIN-8194 in an MYD88-mutated TMD-8 activated B-cell diffuse large B-cell lymphoma (ABC DLBCL) and BCWM.1 Waldenström macroglobulinemia (WM) xenografted mice with wild-type BTK (BTKWT)– or BTKCys481Ser-expressing tumors. KIN-8194 showed superior survival benefit over ibrutinib in both BTKWT- and BTKCys481Ser-expressing TMD-8 DLBCL xenografted mice, including sustained complete responses of >12 weeks off treatment in mice with BTKWT-expressing TMD-8 tumors. The BCL_2 inhibitor venetoclax enhanced the antitumor activity of KIN-8194 in BTKWT- and BTKCys481Ser-expressing MYD88-mutated lymphoma cells and markedly reduced tumor growth and prolonged survival in mice with BTKCys481Ser-expressing TMD-8 tumors treated with both drugs. The findings highlight the feasibility of targeting HCK, a key driver of mutated MYD88 pro-survival signaling, and provide a framework for the advancement of KIN-8194 for human studies in B-cell malignancies driven by HCK and BTK.

1.
Treon
SP
,
Xu
L
,
Yang
G
, et al
.
MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia
.
N Engl J Med.
2012
;
367
(
9
):
826
-
833
.
2.
Xu
L
,
Hunter
ZR
,
Yang
G
, et al
.
MYD88 L265P in Waldenström macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction
.
Blood.
2013
;
121
(
11
):
2051
-
2058
.
3.
Nakamura
T
,
Tateishi
K
,
Niwa
T
, et al
.
Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas
.
Neuropathol Appl Neurobiol.
2016
;
42
(
3
):
279
-
290
.
4.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature.
2011
;
470
(
7332
):
115
-
119
.
5.
Martinez-Lopez
A
,
Curiel-Olmo
S
,
Mollejo
M
, et al
.
MYD88 (L265P) somatic mutation in marginal zone B-cell lymphoma
.
Am J Surg Pathol.
2015
;
39
(
5
):
644
-
651
.
6.
Landau
DA
,
Carter
SL
,
Stojanov
P
, et al
.
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia
.
Cell.
2013
;
152
(
4
):
714
-
726
.
7.
Yang
G
,
Zhou
Y
,
Liu
X
, et al
.
A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenström macroglobulinemia
.
Blood.
2013
;
122
(
7
):
1222
-
1232
.
8.
Yang
G
,
Buhrlage
SJ
,
Tan
L
, et al
.
HCK is a survival determinant transactivated by mutated MYD88, and a direct target of ibrutinib
.
Blood.
2016
;
127
(
25
):
3237
-
3252
.
9.
Liu
X
,
Chen
JG
,
Munshi
M
, et al
.
Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas
.
Blood Adv.
2020
;
4
(
1
):
141
-
153
.
10.
Munshi
M
,
Liu
X
,
Chen
JG
, et al
.
SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas
.
Blood Cancer J.
2020
;
10
(
1
):
12
.
11.
Treon
SP
,
Tripsas
CK
,
Meid
K
, et al
.
Ibrutinib in previously treated Waldenström’s macroglobulinemia
.
N Engl J Med.
2015
;
372
(
15
):
1430
-
1440
.
12.
Wilson
WH
,
Young
RM
,
Schmitz
R
, et al
.
Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma
.
Nat Med.
2015
;
21
(
8
):
922
-
926
.
13.
Grommes
C
,
Pastore
A
,
Palaskas
N
, et al
.
Ibrutinib unmasks critical role of Bruton tyrosine kinase in primary CNS lymphoma
.
Cancer Discov.
2017
;
7
(
9
):
1018
-
1029
.
14.
Chen
R
,
de Vos
S
,
Thieblemont
C
, et al
.
Ibrutinib therapy in patients with relapsed/refractory marginal zone lymphoma: Analysis by prior rituximab treatment and baseline mutations [abstract]
.
Blood.
2017
;
130
(
suppl 1
). Abstract 3026.
15.
Woyach
JA
,
Furman
RR
,
Liu
TM
, et al
.
Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib
.
N Engl J Med.
2014
;
370
(
24
):
2286
-
2294
.
16.
Ahn
IE
,
Underbayev
C
,
Albitar
A
, et al
.
Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia
.
Blood.
2017
;
129
(
11
):
1469
-
1479
.
17.
Xu
L
,
Tsakmaklis
N
,
Yang
G
, et al
.
Acquired mutations associated with ibrutinib resistance in Waldenström macroglobulinemia
.
Blood.
2017
;
129
(
18
):
2519
-
2525
.
18.
Epperla
N
,
Shana’ah
AY
,
Jones
D
, et al
.
Resistance mechanism for ibrutinib in marginal zone lymphoma
.
Blood Adv.
2019
;
3
(
4
):
500
-
502
.
19.
Chen
JG
,
Liu
X
,
Munshi
M
, et al
.
BTKCys481Ser drives ibrutinib resistance via ERK1/2 and protects BTKwild-type MYD88-mutated cells by a paracrine mechanism
.
Blood.
2018
;
131
(
18
):
2047
-
2059
.
20.
Yang
G
,
Wang
J
,
Tan
L
, et al
.
A novel HCK inhibitor Kin-8193 blocks BTK activity in BTKCys481 mutated ibrutinib resistant B-cell lymphomas driven by mutated MYD88 [abstract]
.
Blood.
2018
;
132
(
suppl 1
). Abstract 40.
21.
Burchat
AF
,
Calderwood
DJ
,
Friedman
MM
, et al
.
Pyrazolo[3,4-d]pyrimidines containing an extended 3-substituent as potent inhibitors of Lck -- a selectivity insight
.
Bioorg Med Chem Lett.
2002
;
12
(
12
):
1687
-
1690
.
22.
Saito
Y
,
Yuki
H
,
Kuratani
M
, et al
.
A pyrrolo-pyrimidine derivative targets human primary AML stem cells in vivo
.
Sci Transl Med.
2013
;
5
(
181
):
181ra52
.
23.
Davis
MI
,
Hunt
JP
,
Herrgard
S
, et al
.
Comprehensive analysis of kinase inhibitor selectivity
.
Nat Biotechnol.
2011
;
29
(
11
):
1046
-
1051
.
24.
Patricelli
MP
,
Szardenings
AK
,
Liyanage
M
, et al
.
Functional interrogation of the kinome using nucleotide acyl phosphates
.
Biochemistry.
2007
;
46
(
2
):
350
-
358
.
25.
Cao
Y
,
Yang
G
,
Hunter
ZR
, et al
.
The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4 wild-type and CXCR4 WHIM mutated Waldenstrom macroglobulinaemia cells
.
Br J Haematol.
2015
;
170
(
1
):
134
-
138
.
26.
Kuo
HP
,
Ezell
SA
,
Schweighofer
KJ
, et al
.
Combination of ibrutinib and ABT-199 in diffuse large B-cell lymphoma and follicular lymphoma
.
Mol Cancer Ther.
2017
;
16
(
7
):
1246
-
1256
.
27.
Allan
JN
,
Patel
K
,
Mato
AR
, et al
.
Ongoing results of a phase 1B/2 dose-escalation and cohort-expansion study of the selective, noncovalent, reversible Bruton’s tyrosine kinase inhibitor, vecabrutinib, in B-cell malignancies [abstract]
.
Blood.
2019
;
134
(
suppl 1
). Abstract 3041.
28.
Gomez
EB
,
Isabel
L
,
Rosendahal
MS
, et al
.
Loxo-305, a highly selective and non-covalent next generation BTK inhibitor, inhibits diverse BTK C481 substitution mutations [abstract]
.
Blood.
2019
;
134
(
suppl 1
). Abstract 4644.
29.
Woyach
J
,
Stephens
DM
,
Flinn
IW
, et al
.
Final results of Phase 1, dose escalation study evaluating ARQ 531 in patients with relapsed or refractory B-cell lymphoid malignancies [abstract]
.
Blood.
2019
;
134
(
suppl 1
). Abstract 4298.
30.
Lantermans
HC
,
Minderman
M
,
Kuil
A
, et al
.
Identification of the SRC-family tyrosine kinase HCK as a therapeutic target in mantle cell lymphoma
.
Leukemia.
2021
;
35
:
881
-
886
.
You do not currently have access to this content.

Sign in via your Institution

Sign In