• Tumor-suppressive activity of miR-497/195 in BCP-ALL was mediated by inhibition of cell cycle progression and in vivo leukemia growth).

  • Cooperative activity of lost miR-497/195 expression and deletions of the cell cycle inhibitors CDKN2A/B resulted in poor patient outcome.

We previously identified an association of rapid engraftment of patient-derived leukemia cells transplanted into NOD/SCID mice with early relapse in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In a search for the cellular and molecular profiles associated with this phenotype, we investigated the expression of microRNAs (miRNAs) in different engraftment phenotypes and patient outcomes. We found high expression of miR-497 and miR-195 (hereafter miR-497/195) in patient-derived xenograft samples with slow engraftment derived from patients with favorable outcome. In contrast, epigenetic repression and low expression of these miRNAs was observed in rapidly engrafting samples associated with early relapse. Overexpression of miR-497/195 in patient-derived leukemia cells suppressed in vivo growth of leukemia and prolonged recipient survival. Conversely, inhibition of miR-497/195 led to increased leukemia cell growth. Key cell cycle regulators were downregulated upon miR-497/195 overexpression, and we identified cyclin-dependent kinase 4 (CDK4)– and cyclin-D3 (CCND3)–mediated control of G1/S transition as a principal mechanism for the suppression of BCP-ALL progression by miR-497/195. The critical role for miR-497/195–mediated cell cycle regulation was underscored by finding (in an additional independent series of patient samples) that high expression of miR-497/195 together with a full sequence for CDKN2A and CDKN2B (CDKN2A/B) was associated with excellent outcome, whereas deletion of CDKN2A/B together with low expression of miR-497/195 was associated with clearly inferior relapse-free survival. These findings point to the cooperative loss of cell cycle regulators as a new prognostic factor indicating possible therapeutic targets for pediatric BCP-ALL.

1.
Hunger
SP
,
Lu
X
,
Devidas
M
, et al
.
Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group
.
J Clin Oncol.
2012
;
30
(
14
):
1663
-
1669
.
2.
Nguyen
K
,
Devidas
M
,
Cheng
SC
, et al;
Children’s Oncology Group
.
Factors influencing survival after relapse from acute lymphoblastic leukemia: a Children’s Oncology Group study
.
Leukemia.
2008
;
22
(
12
):
2142
-
2150
.
3.
Sherr
CJ.
Cancer cell cycles
.
Science.
1996
;
274
(
5293
):
1672
-
1677
.
4.
Holleman
A
,
Cheok
MH
,
den Boer
ML
, et al
.
Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment
.
N Engl J Med.
2004
;
351
(
6
):
533
-
542
.
5.
Bortolozzi
R
,
Mattiuzzo
E
,
Trentin
L
,
Accordi
B
,
Basso
G
,
Viola
G.
Ribociclib, a Cdk4/Cdk6 kinase inhibitor, enhances glucocorticoid sensitivity in B-acute lymphoblastic leukemia (B-All)
.
Biochem Pharmacol.
2018
;
153
(
July
):
230
-
241
.
6.
Nemoto
A
,
Saida
S
,
Kato
I
, et al
.
Specific antileukemic activity of PD0332991, a CDK4/6 inhibitor, against Philadelphia chromosome-positive lymphoid leukemia
.
Mol Cancer Ther.
2016
;
15
(
1
):
94
-
105
.
7.
Hasan
MN
,
Queudeville
M
,
Trentin
L
, et al
.
Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model
.
Oncotarget.
2015
;
6
(
3
):
1382
-
1395
.
8.
Ghelli Luserna di Rora’
A
,
Iacobucci
I
,
Martinelli
G.
The cell cycle checkpoint inhibitors in the treatment of leukemias
.
J Hematol Oncol.
2017
;
10
(
1
):
77
.
9.
Bartel
DP.
MicroRNAs: target recognition and regulatory functions
.
Cell.
2009
;
136
(
2
):
215
-
233
.
10.
Bartel
DP.
Metazoan MicroRNAs
.
Cell.
2018
;
173
(
1
):
20
-
51
.
11.
Montagner
S
,
Dehó
L
,
Monticelli
S.
MicroRNAs in hematopoietic development
.
BMC Immunol.
2014
;
15
(
1
):
14
.
12.
Ventura
A
,
Young
AG
,
Winslow
MM
, et al
.
Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters
.
Cell.
2008
;
132
(
5
):
875
-
886
.
13.
Chen
C-Z
,
Li
L
,
Lodish
HF
,
Bartel
DP.
MicroRNAs modulate hematopoietic lineage differentiation
.
Science.
2004
;
303
(
5654
):
83
-
86
.
14.
Schotte
D
,
De Menezes
RX
,
Akbari Moqadam
F
, et al
.
MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia
.
Haematologica.
2011
;
96
(
5
):
703
-
711
.
15.
Spagnuolo
M
,
Regazzo
G
,
De Dominici
M
, et al
.
Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells
.
Haematologica.
2019
;
104
(
1
):
82
-
92
.
16.
Sayadi
M
,
Ajdary
S
,
Nadali
F
,
Rostami
S
,
Edalati Fahtabad
M.
Tumor suppressive function of microRNA-192 in acute lymphoblastic leukemia
.
Bosn J Basic Med Sci.
2017
;
17
(
3
):
248
-
254
.
17.
Jiang
Q
,
Lu
X
,
Huang
P
, et al
.
Expression of miR-652-3p and effect on apoptosis and drug sensitivity in pediatric acute lymphoblastic leukemia
.
BioMed Res Int.
2018
;
2018
:
5724686
.
18.
Nucera
S
,
Giustacchini
A
,
Boccalatte
F
, et al
.
miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia
.
Cancer Cell.
2016
;
29
(
6
):
905
-
921
.
19.
Agirre
X
,
Vilas-Zornoza
A
,
Jiménez-Velasco
A
, et al
.
Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia
.
Cancer Res.
2009
;
69
(
10
):
4443
-
4453
.
20.
Meyer
LH
,
Eckhoff
SM
,
Queudeville
M
, et al
.
Early relapse in ALL is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways
.
Cancer Cell.
2011
;
19
(
2
):
206
-
217
.
21.
Li
D
,
Zhao
Y
,
Liu
C
, et al
.
Analysis of MiR-195 and MiR-497 expression, regulation and role in breast cancer
.
Clin Cancer Res.
2011
;
17
(
7
):
1722
-
1730
.
22.
Cheng
H
,
Xue
J
,
Yang
S
, et al
.
Co-targeting of IGF1R/mTOR pathway by miR-497 and miR-99a impairs hepatocellular carcinoma development
.
Oncotarget.
2017
;
8
(
29
):
47984
-
47997
.
23.
Falzone
L
,
Scola
L
,
Zanghì
A
, et al
.
Integrated analysis of colorectal cancer microRNA datasets: identification of microRNAs associated with tumor development
.
Aging (Albany NY).
2018
;
10
(
5
):
1000
-
1014
.
24.
Maura
F
,
Cutrona
G
,
Mosca
L
, et al
.
Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia
.
Leuk Lymphoma.
2015
;
56
(
11
):
3150
-
3158
.
25.
He
B
,
Yan
F
,
Wu
C.
Overexpressed miR-195 attenuated immune escape of diffuse large B-cell lymphoma by targeting PD-L1
.
Biomed Pharmacother.
2018
;
98
:
95
-
101
.
26.
Queudeville
M
,
Seyfried
F
,
Eckhoff
SM
, et al
.
Rapid engraftment of human ALL in NOD/SCID mice involves deficient apoptosis signaling
.
Cell Death Dis.
2012
;
3
(
8
):
e364
.
27.
Bortoluzzi
S
,
Bisognin
A
,
Biasiolo
M
, et al;
AGIMM (Associazione Italiana per la Ricerca sul Cancro–Gruppo Italiano Malattie Mieloproliferative) Investigators
.
Characterization and discovery of novel miRNAs and moRNAs in JAK2V617F-mutated SET2 cells
.
Blood.
2012
;
119
(
13
):
e120
-
e130
.
28.
Gaffo
E
,
Bortolomeazzi
M
,
Bisognin
A
, et al
.
MiR&moRe2: A bioinformatics tool to characterize microRNAs and microRNA-offset RNAs from small RNA-seq data
.
Int J Mol Sci.
2020
;
21
(
5
):
1754
.
29.
Love
MI
,
Huber
W
,
Anders
S.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol.
2014
;
15
(
12
):
550
.
30.
Benjamini
Y
,
Hochberg
Y.
Controlling the false discovery rate: A practical and powerful approach to multiple testing
.
J R Stat Soc B.
1995
;
57
(
1
):
289
-
300
.
31.
Livak
KJ
,
Schmittgen
TD.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method
.
Methods.
2001
;
25
(
4
):
402
-
408
.
32.
Kingston
RE
,
Chen
CA
,
Rose
JK.
Calcium phosphate transfection
.
Current Protocols in Molecular Biology.
2003
;
63
:
9.1.1
-
9.1.11
.
33.
Klaus
B
,
Reisenauer
S.
An end to end workflow for differential gene expression using Affymetrix microarrays
.
F1000 Res.
2016
;
5
:
1384
.
34.
Kuleshov
MV
,
Jones
MR
,
Rouillard
AD
, et al
.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update
.
Nucleic Acids Res.
2016
;
44
(
W1
):
W90
-
W97
.
35.
Chan
LN
,
Chen
Z
,
Braas
D
, et al
.
Metabolic gatekeeper function of B-lymphoid transcription factors
.
Nature.
2017
;
542
(
7642
):
479
-
483
.
36.
Finnerty
JR
,
Wang
WX
,
Hébert
SS
,
Wilfred
BR
,
Mao
G
,
Nelson
PT.
The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases
.
J Mol Biol.
2010
;
402
(
3
):
491
-
509
.
37.
Iacobucci
I
,
Mullighan
CG.
Genetic basis of acute lymphoblastic leukemia
.
J Clin Oncol.
2017
;
35
(
9
):
975
-
983
.
38.
Stanulla
M
,
Dagdan
E
,
Zaliova
M
, et al;
International BFM Study Group
.
IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia
.
J Clin Oncol.
2018
;
36
(
12
):
1240
-
1249
.
39.
Menigatti
M
,
Staiano
T
,
Manser
CN
, et al
.
Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions
.
Oncogenesis.
2013
;
2
(
7
):
e56
.
40.
Trentin
L
,
Queudeville
M
,
Eckhoff
SM
, et al
.
Leukemia reconstitution in vivo is driven by cells in early cell cycle and low metabolic state
.
Haematologica.
2018
;
103
(
6
):
1008
-
1017
.
41.
Agarwal
V
,
Bell
GW
,
Nam
J-W
,
Bartel
DP.
Predicting effective microRNA target sites in mammalian mRNAs
.
eLife.
2015
;
4
:
e05005
.
42.
Furuta
M
,
Kozaki
K
,
Tanimoto
K
, et al
.
The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma
.
PLoS One.
2013
;
8
(
3
):
e60155
.
43.
Graf
F
,
Mosch
B
,
Koehler
L
,
Bergmann
R
,
Wuest
F
,
Pietzsch
J.
Cyclin-dependent kinase 4/6 (cdk4/6) inhibitors: perspectives in cancer therapy and imaging
.
Mini Rev Med Chem.
2010
;
10
(
6
):
527
-
539
.
44.
Bertin
R
,
Acquaviva
C
,
Mirebeau
D
,
Guidal-Giroux
C
,
Vilmer
E
,
Cavé
H.
CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono- and bi-allelic 9p21 deletions in childhood acute lymphoblastic leukemia
.
Genes Chromosomes Cancer.
2003
;
37
(
1
):
44
-
57
.
45.
Nobori
T
,
Miura
K
,
Wu
DJ
,
Lois
A
,
Takabayashi
K
,
Carson
DA.
Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers
.
Nature.
1994
;
368
(
6473
):
753
-
756
.
46.
Carrasco Salas
P
,
Fernández
L
,
Vela
M
, et al
.
The role of CDKN2A/B deletions in pediatric acute lymphoblastic leukemia
.
Pediatr Hematol Oncol.
2016
;
33
(
7-8
):
415
-
422
.
47.
Kaatsch
P.
Epidemiology of childhood cancer
.
Cancer Treat Rev.
2010
;
36
(
4
):
277
-
285
.
48.
Mullighan
CG.
The molecular genetic makeup of acute lymphoblastic leukemia
.
Hematology Am Soc Hematol Educ Program.
2012
;
2012
(
1
):
389
-
396
.
49.
Forero-Castro
M
,
Robledo
C
,
Benito
R
, et al
.
Mutations in TP53 and JAK2 are independent prognostic biomarkers in B-cell precursor acute lymphoblastic leukaemia
.
Br J Cancer.
2017
;
117
(
2
):
256
-
265
.
50.
Sulong
S
,
Moorman
AV
,
Irving
JAE
, et al
.
A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups
.
Blood.
2009
;
113
(
1
):
100
-
107
.
51.
Krug
U
,
Arnold
G
,
Koeffler
HP.
Tumor suppressor genes in normal and malignant hematopoiesis
.
Oncogene.
2002
;
21
(
21
):
3475
-
3495
.
52.
Pomerantz
J
,
Schreiber-Agus
N
,
Liégeois
NJ
, et al
.
The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53
.
Cell.
1998
;
92
(
6
):
713
-
723
.
53.
Zhang
Y
,
Xiong
Y
,
Yarbrough
WG.
ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways
.
Cell.
1998
;
92
(
6
):
725
-
734
.
54.
Chai
L
,
Kang
XJ
,
Sun
ZZ
, et al
.
MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells
.
Cancer Manag Res.
2018
;
10
:
989
-
1003
.
55.
Hoareau-Aveilla
C
,
Quelen
C
,
Congras
A
, et al
.
miR-497 suppresses cycle progression through an axis involving CDK6 in ALK-positive cells
.
Haematologica.
2019
;
104
(
2
):
347
-
359
.
56.
Itesako
T
,
Seki
N
,
Yoshino
H
, et al
.
The microRNA expression signature of bladder cancer by deep sequencing: the functional significance of the miR-195/497 cluster
.
PLoS One.
2014
;
9
(
2
):
e84311
.
57.
Agarwal
M
,
Bakhshi
S
,
Dwivedi
SN
,
Kabra
M
,
Shukla
R
,
Seth
R.
Cyclin dependent kinase inhibitor 2A/B gene deletions are markers of poor prognosis in Indian children with acute lymphoblastic leukemia
.
Pediatr Blood Cancer.
2018
;
65
(
6
):
e27001
.
58.
Carter
TL
,
Watt
PM
,
Kumar
R
, et al
.
Hemizygous p16(INK4A) deletion in pediatric acute lymphoblastic leukemia predicts independent risk of relapse
.
Blood.
2001
;
97
(
2
):
572
-
574
.
59.
Dalle
JH
,
Fournier
M
,
Nelken
B
, et al
.
p16(INK4a) immunocytochemical analysis is an independent prognostic factor in childhood acute lymphoblastic leukemia
.
Blood.
2002
;
99
(
7
):
2620
-
2623
.
60.
Kim
M
,
Yim
SH
,
Cho
NS
, et al
.
Homozygous deletion of CDKN2A (p16, p14) and CDKN2B (p15) genes is a poor prognostic factor in adult but not in childhood B-lineage acute lymphoblastic leukemia: a comparative deletion and hypermethylation study
.
Cancer Genet Cytogenet.
2009
;
195
(
1
):
59
-
65
.
61.
Mirebeau
D
,
Acquaviva
C
,
Suciu
S
, et al;
EORTC-CLG
.
The prognostic significance of CDKN2A, CDKN2B and MTAP inactivation in B-lineage acute lymphoblastic leukemia of childhood. Results of the EORTC studies 58881 and 58951
.
Haematologica.
2006
;
91
(
7
):
881
-
885
.
62.
Steeghs
EMP
,
Boer
JM
,
Hoogkamer
AQ
, et al
.
Copy number alterations in B-cell development genes, drug resistance, and clinical outcome in pediatric B-cell precursor acute lymphoblastic leukemia
.
Sci Rep.
2019
;
9
(
1
):
4634
.
63.
Usvasalo
A
,
Savola
S
,
Räty
R
, et al
.
CDKN2A deletions in acute lymphoblastic leukemia of adolescents and young adults: an array CGH study
.
Leuk Res.
2008
;
32
(
8
):
1228
-
1235
.
64.
van Zutven
LJ
,
van Drunen
E
,
de Bont
JM
, et al
.
CDKN2 deletions have no prognostic value in childhood precursor-B acute lymphoblastic leukaemia
.
Leukemia.
2005
;
19
(
7
):
1281
-
1284
.
65.
Zhou
M
,
Gu
L
,
Yeager
AM
,
Findley
HW.
Incidence and clinical significance of CDKN2/MTS1/P16ink4A and MTS2/P15ink4B gene deletions in childhood acute lymphoblastic leukemia
.
Pediatr Hematol Oncol.
1997
;
14
(
2
):
141
-
150
.
66.
Wang
F
,
Demir
S
,
Gehringer
F
, et al
.
Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia
.
Blood.
2018
;
131
(
26
):
2929
-
2942
.
You do not currently have access to this content.

Sign in via your Institution

Sign In