• LSD1 inhibition promotes γ-globin induction but blocks erythroid differentiation.

  • Simultaneous LSD1 and RUNX1 inactivation of erythroid progenitors promotes erythroid differentiation and γ-globin synthesis.

Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of β-globinopathies (sickle cell disease and β-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor–like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.

1.
Murayama
M.
Molecular mechanism of red cell “sickling”
.
Science.
1966
;
153
(
3732
):
145
-
149
.
2.
Platt
OS
,
Brambilla
DJ
,
Rosse
WF
, et al
.
Mortality in sickle cell disease. Life expectancy and risk factors for early death
.
N Engl J Med.
1994
;
330
(
23
):
1639
-
1644
.
3.
Origa
R.
β-Thalassemia
.
Genet Med.
2017
;
19
(
6
):
609
-
619
.
4.
Dedoussis
GV
,
Sinopoulou
K
,
Gyparaki
M
,
Loutradis
A.
Fetal hemoglobin expression in the compound heterozygous state for −117 (G→A) Agamma HPFH and IVSII-745 (C→G) beta+ thalassemia: a case study
.
Am J Hematol.
1999
;
61
(
2
):
139
-
143
.
5.
Dedoussis
GV
,
Sinopoulou
K
,
Gyparaki
M
,
Loutradis
A.
Fetal hemoglobin expression in the compound heterozygous state for −117 (G→A) Agamma HPFH and IVS-1 nt 110 (G→A) beta+ thalassemia: a case study
.
Eur J Haematol.
2000
;
65
(
2
):
93
-
96
.
6.
Marcus
SJ
,
Kinney
TR
,
Schultz
WH
,
O’Branski
EE
,
Ware
RE.
Quantitative analysis of erythrocytes containing fetal hemoglobin (F cells) in children with sickle cell disease
.
Am J Hematol.
1997
;
54
(
1
):
40
-
46
.
7.
Olivieri
NF
,
Weatherall
DJ.
The therapeutic reactivation of fetal haemoglobin
.
Hum Mol Genet.
1998
;
7
(
10
):
1655
-
1658
.
8.
Papadakis
MN
,
Patrinos
GP
,
Tsaftaridis
P
,
Loutradi-Anagnostou
A.
A comparative study of Greek nondeletional hereditary persistence of fetal hemoglobin and beta-thalassemia compound heterozygotes
.
J Mol Med (Berl).
2002
;
80
(
4
):
243
-
247
.
9.
Yu
L
,
Myers
G
,
Engel
JD.
Small molecule therapeutics to treat the β-globinopathies
.
Curr Opin Hematol.
2020
;
27
(
3
):
129
-
140
.
10.
Tanabe
O
,
Katsuoka
F
,
Campbell
AD
, et al
.
An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer
.
EMBO J.
2002
;
21
(
13
):
3434
-
3442
.
11.
Tanabe
O
,
McPhee
D
,
Kobayashi
S
, et al
.
Embryonic and fetal beta-globin gene repression by the orphan nuclear receptors, TR2 and TR4
.
EMBO J.
2007
;
26
(
9
):
2295
-
2306
.
12.
Martyn
GE
,
Wienert
B
,
Yang
L
, et al
.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
.
Nat Genet.
2018
;
50
(
4
):
498
-
503
.
13.
Chen
Z
,
Luo
HY
,
Basran
RK
, et al
.
A T-to-G transversion at nucleotide −567 upstream of HBG2 in a GATA-1 binding motif is associated with elevated hemoglobin F
.
Mol Cell Biol.
2008
;
28
(
13
):
4386
-
4393
.
14.
Xu
J
,
Bauer
DE
,
Kerenyi
MA
, et al
.
Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A
.
Proc Natl Acad Sci USA.
2013
;
110
(
16
):
6518
-
6523
.
15.
Yu
L
,
Jearawiriyapaisarn
N
,
Lee
MP
, et al
.
BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression
.
Genes Dev.
2018
;
32
(
23-24
):
1537
-
1549
.
16.
Shi
L
,
Cui
S
,
Engel
JD
,
Tanabe
O.
Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction
.
Nat Med.
2013
;
19
(
3
):
291
-
294
.
17.
Hosseini
A
,
Minucci
S.
A comprehensive review of lysine-specific demethylase 1 and its roles in cancer
.
Epigenomics.
2017
;
9
(
8
):
1123
-
1142
.
18.
Magliulo
D
,
Bernardi
R
,
Messina
S.
Lysine-specific demethylase 1A as a promising target in acute myeloid leukemia
.
Front Oncol.
2018
;
8
:
255
.
19.
Ibanez
V
,
Vaitkus
K
,
Rivers
A
, et al
.
Efficacy and safety of long-term RN-1 treatment to increase HbF in baboons
.
Blood.
2017
;
129
(
2
):
260
-
263
.
20.
Rivers
A
,
Vaitkus
K
,
Ibanez
V
, et al
.
The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis)
.
Haematologica.
2016
;
101
(
6
):
688
-
697
.
21.
Cui
S
,
Lim
KC
,
Shi
L
, et al
.
The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice
.
Blood.
2015
;
126
(
3
):
386
-
396
.
22.
Kerenyi
MA
,
Shao
Z
,
Hsu
YJ
, et al
.
Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation
.
eLife.
2013
;
2
:
e00633
.
23.
Sprüssel
A
,
Schulte
JH
,
Weber
S
, et al
.
Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation
.
Leukemia.
2012
;
26
(
9
):
2039
-
2051
.
24.
Giarratana
MC
,
Rouard
H
,
Dumont
A
, et al
.
Proof of principle for transfusion of in vitro-generated red blood cells
.
Blood.
2011
;
118
(
19
):
5071
-
5079
.
25.
Takai
J
,
Moriguchi
T
,
Suzuki
M
,
Yu
L
,
Ohneda
K
,
Yamamoto
M.
The Gata1 5' region harbors distinct cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs
.
Blood.
2013
;
122
(
20
):
3450
-
3460
.
26.
Brandt
W
,
Khandekar
M
,
Suzuki
N
,
Yamamoto
M
,
Lim
KC
,
Engel
JD.
Defining the functional boundaries of the Gata2 locus by rescue with a linked bacterial artificial chromosome transgene
.
J Biol Chem.
2008
;
283
(
14
):
8976
-
8983
.
27.
Madisen
L
,
Zwingman
TA
,
Sunkin
SM
, et al
.
A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
.
Nat Neurosci.
2010
;
13
(
1
):
133
-
140
.
28.
Wang
J
,
Scully
K
,
Zhu
X
, et al
.
Opposing LSD1 complexes function in developmental gene activation and repression programmes
.
Nature.
2007
;
446
(
7138
):
882
-
887
.
29.
Yu
L
,
Moriguchi
T
,
Souma
T
, et al
.
GATA2 regulates body water homeostasis through maintaining aquaporin 2 expression in renal collecting ducts
.
Mol Cell Biol.
2014
;
34
(
11
):
1929
-
1941
.
30.
Moriguchi
T
,
Yu
L
,
Takai
J
, et al
.
The human GATA1 gene retains a 5' insulator that maintains chromosomal architecture and GATA1 expression levels in splenic erythroblasts
.
Mol Cell Biol.
2015
;
35
(
10
):
1825
-
1837
.
31.
Yu
L
,
Takai
J
,
Otsuki
A
, et al
.
Derepression of the DNA methylation machinery of the Gata1 gene triggers the differentiation cue for erythropoiesis
.
Mol Cell Biol.
2017
;
37
(
8
):
e00592-16
.
32.
Giarratana
MC
,
Kobari
L
,
Lapillonne
H
, et al
.
Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells
.
Nat Biotechnol.
2005
;
23
(
1
):
69
-
74
.
33.
Li
J
,
Hale
J
,
Bhagia
P
, et al
.
Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E
.
Blood.
2014
;
124
(
24
):
3636
-
3645
.
34.
Kühn
R
,
Schwenk
F
,
Aguet
M
,
Rajewsky
K.
Inducible gene targeting in mice
.
Science.
1995
;
269
(
5229
):
1427
-
1429
.
35.
Heinrich
AC
,
Pelanda
R
,
Klingmüller
U.
A mouse model for visualization and conditional mutations in the erythroid lineage
.
Blood.
2004
;
104
(
3
):
659
-
666
.
36.
Georgiades
P
,
Ogilvy
S
,
Duval
H
, et al
.
VavCre transgenic mice: a tool for mutagenesis in hematopoietic and endothelial lineages
.
Genesis.
2002
;
34
(
4
):
251
-
256
.
37.
Suzuki
M
,
Moriguchi
T
,
Ohneda
K
,
Yamamoto
M.
Differential contribution of the Gata1 gene hematopoietic enhancer to erythroid differentiation
.
Mol Cell Biol.
2009
;
29
(
5
):
1163
-
1175
.
38.
Lim
KC
,
Hosoya
T
,
Brandt
W
, et al
.
Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning
.
J Clin Invest.
2012
;
122
(
10
):
3705
-
3717
.
39.
Chen
K
,
Liu
J
,
Heck
S
,
Chasis
JA
,
An
X
,
Mohandas
N.
Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis
.
Proc Natl Acad Sci USA.
2009
;
106
(
41
):
17413
-
17418
.
40.
Shimizu
R
,
Engel
JD
,
Yamamoto
M.
GATA1-related leukaemias
.
Nat Rev Cancer.
2008
;
8
(
4
):
279
-
287
.
41.
Pronk
CJ
,
Rossi
DJ
,
Månsson
R
, et al
.
Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy
.
Cell Stem Cell.
2007
;
1
(
4
):
428
-
442
.
42.
Arinobu
Y
,
Mizuno
S
,
Chong
Y
, et al
.
Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages
.
Cell Stem Cell.
2007
;
1
(
4
):
416
-
427
.
43.
Riccardi
C
,
Nicoletti
I.
Analysis of apoptosis by propidium iodide staining and flow cytometry
.
Nat Protoc.
2006
;
1
(
3
):
1458
-
1461
.
44.
Laslo
P
,
Spooner
CJ
,
Warmflash
A
, et al
.
Multilineage transcriptional priming and determination of alternate hematopoietic cell fates
.
Cell.
2006
;
126
(
4
):
755
-
766
.
45.
Scott
EW
,
Simon
MC
,
Anastasi
J
,
Singh
H.
Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages
.
Science.
1994
;
265
(
5178
):
1573
-
1577
.
46.
Rosenbauer
F
,
Tenen
DG.
Transcription factors in myeloid development: balancing differentiation with transformation
.
Nat Rev Immunol.
2007
;
7
(
2
):
105
-
117
.
47.
Willcockson
MA
,
Taylor
SJ
,
Ghosh
S
, et al
.
Runx1 promotes murine erythroid progenitor proliferation and inhibits differentiation by preventing Pu.1 downregulation
.
Proc Natl Acad Sci USA.
2019
;
116
(
36
):
17841
-
17847
.
48.
Kurita
R
,
Suda
N
,
Sudo
K
, et al
.
Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells
.
PLoS One.
2013
;
8
(
3
):
e59890
.
49.
Cunningham
L
,
Finckbeiner
S
,
Hyde
RK
, et al
.
Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFβ interaction
.
Proc Natl Acad Sci USA.
2012
;
109
(
36
):
14592
-
14597
.
50.
Illendula
A
,
Gilmour
J
,
Grembecka
J
, et al
.
Small molecule inhibitor of CBFβ-RUNX binding for RUNX transcription factor driven cancers [published correction appears in EBioMedicine. 2016;8:188]
.
EBioMedicine.
2016
;
8
:
117
-
131
.
51.
Chou
ST
,
Khandros
E
,
Bailey
LC
, et al
.
Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate
.
Blood.
2009
;
114
(
5
):
983
-
994
.
52.
Kohrogi
K
,
Hino
S
,
Sakamoto
A
, et al
.
LSD1 defines erythroleukemia metabolism by controlling the lineage-specific transcription factors GATA1 and C/EBPα
.
Blood Adv.
2021
;
5
(
9
):
2305
-
2318
.
53.
Moreau-Gachelin
F
,
Tavitian
A
,
Tambourin
P.
Spi-1 is a putative oncogene in virally induced murine erythroleukaemias
.
Nature.
1988
;
331
(
6153
):
277
-
280
.
54.
Fang
Y
,
Liao
G
,
Yu
B.
LSD1/KDM1A inhibitors in clinical trials: advances and prospects
.
J Hematol Oncol.
2019
;
12
(
1
):
129
.
55.
Wass
M
,
Gollner
S
,
Besenbeck
B
, et al
.
A proof of concept phase I/II pilot trial of LSD1 inhibition by tranylcypromine combined with ATRA in refractory/relapsed AML patients not eligible for intensive therapy
.
Leukemia.
2021
;
35
(
3
):
701
-
711
.
You do not currently have access to this content.

Sign in via your Institution

Sign In