• Chromatin accessibility patterns at key heptad regulatory elements can predict cell identity in healthy progenitors and leukemic cells.

  • A subcircuit comprising GATA2, TAL1, and ERG regulates the stem cell to erythroid transition in both healthy and leukemic cells.

Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other’s, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.

1.
Doulatov
S
,
Notta
F
,
Laurenti
E
,
Dick
JE.
Hematopoiesis: a human perspective
.
Cell Stem Cell.
2012
;
10
(
2
):
120
-
136
.
2.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol.
2017
;
19
(
4
):
271
-
281
.
3.
Buenrostro
JD
,
Corces
MR
,
Lareau
CA
, et al
.
Integrated single-cell analysis maps the continuous regulatory landscape of human hematopoietic differentiation
.
Cell.
2018
;
173
(
6
):
1535
-
1548.e1516
.
4.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet.
2016
;
48
(
10
):
1193
-
1203
.
5.
Karamitros
D
,
Stoilova
B
,
Aboukhalil
Z
, et al
.
Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells
.
Nat Immunol.
2018
;
19
(
1
):
85
-
97
.
6.
Setty
M
,
Kiseliovas
V
,
Levine
J
,
Gayoso
A
,
Mazutis
L
,
Pe’er
D.
Characterization of cell fate probabilities in single-cell data with Palantir [published correction appears in Nat Biotechnol. 2019;37(10):1237]
.
Nat Biotechnol.
2019
;
37
(
4
):
451
-
460
.
7.
Watcham
S
,
Kucinski
I
,
Gottgens
B.
New Insights into Haematopoietic Differentiation Landscapes from scRNA-seq
.
Blood.
2019
;
133
(
13
):
1415
-
1426
.
8.
Pimanda
JE
,
Göttgens
B.
Gene regulatory networks governing haematopoietic stem cell development and identity
.
Int J Dev Biol.
2010
;
54
(
6-7
):
1201
-
1211
.
9.
Sive
JI
,
Göttgens
B.
Transcriptional network control of normal and leukaemic haematopoiesis
.
Exp Cell Res.
2014
;
329
(
2
):
255
-
264
.
10.
Enver
T
,
Pera
M
,
Peterson
C
,
Andrews
PW.
Stem cell states, fates, and the rules of attraction
.
Cell Stem Cell.
2009
;
4
(
5
):
387
-
397
.
11.
Moris
N
,
Pina
C
,
Arias
AM.
Transition states and cell fate decisions in epigenetic landscapes
.
Nat Rev Genet.
2016
;
17
(
11
):
693
-
703
.
12.
Wilkinson
AC
,
Nakauchi
H
,
Göttgens
B.
Mammalian transcription factor networks: recent advances in interrogating biological complexity
.
Cell Syst.
2017
;
5
(
4
):
319
-
331
.
13.
Thoms
JAI
,
Beck
D
,
Pimanda
JE.
Transcriptional networks in acute myeloid leukemia
.
Genes Chromosomes Cancer.
2019
;
58
(
12
):
859
-
874
.
14.
Döhner
H
,
Weisdorf
DJ
,
Bloomfield
CD.
Acute myeloid leukemia
.
N Engl J Med.
2015
;
373
(
12
):
1136
-
1152
.
15.
Horton
SJ
,
Huntly
BJ.
Recent advances in acute myeloid leukemia stem cell biology
.
Haematologica.
2012
;
97
(
7
):
966
-
974
.
16.
Jan
M
,
Snyder
TM
,
Corces-Zimmerman
MR
, et al
.
Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia
.
Sci Transl Med.
2012
;
4
(
149
):
149ra118
.
17.
Shlush
LI
,
Zandi
S
,
Mitchell
A
, et al;
HALT Pan-Leukemia Gene Panel Consortium
.
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia [published correction appears in Nature. 2014;508(7496):420]
.
Nature.
2014
;
506
(
7488
):
328
-
333
.
18.
Basilico
S
,
Göttgens
B.
Dysregulation of haematopoietic stem cell regulatory programs in acute myeloid leukaemia
.
J Mol Med (Berl).
2017
;
95
(
7
):
719
-
727
.
19.
Corces-Zimmerman
MR
,
Hong
WJ
,
Weissman
IL
,
Medeiros
BC
,
Majeti
R.
Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission
.
Proc Natl Acad Sci USA.
2014
;
111
(
7
):
2548
-
2553
.
20.
Lapidot
T
,
Sirard
C
,
Vormoor
J
, et al
.
A cell initiating human acute myeloid leukaemia after transplantation into SCID mice
.
Nature.
1994
;
367
(
6464
):
645
-
648
.
21.
Goardon
N
,
Marchi
E
,
Atzberger
A
, et al
.
Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia
.
Cancer Cell.
2011
;
19
(
1
):
138
-
152
.
22.
Sarry
JE
,
Murphy
K
,
Perry
R
, et al
.
Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice
.
J Clin Invest.
2011
;
121
(
1
):
384
-
395
.
23.
Shlush
LI
,
Mitchell
A
,
Heisler
L
, et al
.
Tracing the origins of relapse in acute myeloid leukaemia to stem cells
.
Nature.
2017
;
547
(
7661
):
104
-
108
.
24.
Eppert
K
,
Takenaka
K
,
Lechman
ER
, et al
.
Stem cell gene expression programs influence clinical outcome in human leukemia
.
Nat Med.
2011
;
17
(
9
):
1086
-
1093
.
25.
Gentles
AJ
,
Plevritis
SK
,
Majeti
R
,
Alizadeh
AA.
Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia
.
JAMA.
2010
;
304
(
24
):
2706
-
2715
.
26.
Bonnet
D
,
Dick
JE.
Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell
.
Nat Med.
1997
;
3
(
7
):
730
-
737
.
27.
Sanz
MA
,
Grimwade
D
,
Tallman
MS
, et al
.
Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet
.
Blood.
2009
;
113
(
9
):
1875
-
1891
.
28.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med.
2018
;
378
(
25
):
2386
-
2398.
29.
Stein
EM
,
DiNardo
CD
,
Pollyea
DA
, et al
.
Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia
.
Blood.
2017
;
130
(
6
):
722
-
731
.
30.
Hansen
E
,
Quivoron
C
,
Straley
K
, et al
.
AG-120, an oral, selective, first-in-class, potent inhibitor of mutant IDH1, reduces intracellular 2HG and induces cellular differentiation in TF-1 R132H cells and primary human IDH1 mutant AML patient samples treated ex vivo [abstract]
.
Blood.
2014
;
124
(
21
). Abstract 3734.
31.
Popovici-Muller
J
,
Lemieux
RM
,
Artin
E
, et al
.
Discovery of AG-120 (ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers
.
ACS Med Chem Lett.
2018
;
9
(
4
):
300
-
305
.
32.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med.
2016
;
374
(
23
):
2209
-
2221
.
33.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood.
2016
;
127
(
20
):
2391
-
2405
.
34.
Ley
TJ
,
Miller
C
,
Ding
L
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med.
2013
;
368
(
22
):
2059
-
2074.
35.
Assi
SA
,
Imperato
MR
,
Coleman
DJL
, et al
.
Subtype-specific regulatory network rewiring in acute myeloid leukemia
.
Nat Genet.
2019
;
51
(
1
):
151
-
162
.
36.
Yi
G
,
Wierenga
ATJ
,
Petraglia
F
, et al
.
Chromatin-Based Classification of Genetically Heterogeneous AMLs into Two Distinct Subtypes with Diverse Stemness Phenotypes
.
Cell Rep.
2019
;
26
(
4
):
1059
-
1069.e6
.
37.
McKeown
MR
,
Corces
MR
,
Eaton
ML
, et al
.
Superenhancer analysis defines novel epigenomic subtypes of non-APL AML, including an RARα dependency targetable by SY-1425, a potent and selective RARα agonist
.
Cancer Discov.
2017
;
7
(
10
):
1136
-
1153
.
38.
Davidson
EH.
Emerging properties of animal gene regulatory networks
.
Nature.
2010
;
468
(
7326
):
911
-
920
.
39.
Bell
CC
,
Fennell
KA
,
Chan
YC
, et al
.
Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia
.
Nat Commun.
2019
;
10
(
1
):
2723
.
40.
Fennell
KA
,
Bell
CC
,
Dawson
MA.
Epigenetic therapies in acute myeloid leukemia: where to from here?
Blood.
2019
;
134
(
22
):
1891
-
1901
.
41.
Guo
L
,
Li
J
,
Zeng
H
, et al
.
A combination strategy targeting enhancer plasticity exerts synergistic lethality against BETi-resistant leukemia cells
.
Nat Commun.
2020
;
11
(
1
):
740
.
42.
Beck
D
,
Thoms
JA
,
Perera
D
, et al
.
Genome-wide analysis of transcriptional regulators in human HSPCs reveals a densely interconnected network of coding and noncoding genes
.
Blood.
2013
;
122
(
14
):
e12
-
e22
.
43.
Diffner
E
,
Beck
D
,
Gudgin
E
, et al
.
Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia [published correction appears in Blood. 2014;123(18):2901]
.
Blood.
2013
;
121
(
12
):
2289
-
2300
.
44.
Wilson
NK
,
Foster
SD
,
Wang
X
, et al
.
Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators
.
Cell Stem Cell.
2010
;
7
(
4
):
532
-
544
.
45.
Guibentif
C
,
Rönn
RE
,
Böiers
C
, et al
.
Single-cell analysis identifies distinct stages of human endothelial-to-hematopoietic transition
.
Cell Rep.
2017
;
19
(
1
):
10
-
19
.
46.
Bergiers
I
,
Andrews
T
,
Vargel Bölükbaşı
Ö
, et al
.
Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis
.
eLife.
2018
;
7
:
e29312
.
47.
Oram
SH
,
Thoms
JA
,
Pridans
C
, et al
.
A previously unrecognized promoter of LMO2 forms part of a transcriptional regulatory circuit mediating LMO2 expression in a subset of T-acute lymphoblastic leukaemia patients
.
Oncogene.
2010
;
29
(
43
):
5796
-
5808
.
48.
Curtis
DJ
,
Salmon
JM
,
Pimanda
JE.
Concise review: Blood relatives: formation and regulation of hematopoietic stem cells by the basic helix-loop-helix transcription factors stem cell leukemia and lymphoblastic leukemia-derived sequence 1
.
Stem Cells.
2012
;
30
(
6
):
1053
-
1058
.
49.
Marcucci
G
,
Baldus
CD
,
Ruppert
AS
, et al
.
Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study
.
J Clin Oncol.
2005
;
23
(
36
):
9234
-
9242
.
50.
Li
Y
,
Luo
H
,
Liu
T
,
Zacksenhaus
E
,
Ben-David
Y.
The ets transcription factor Fli-1 in development, cancer and disease
.
Oncogene.
2015
;
34
(
16
):
2022
-
2031
.
51.
Mandoli
A
,
Singh
AA
,
Jansen
PW
, et al
.
CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia
.
Leukemia.
2014
;
28
(
4
):
770
-
778
.
52.
Mandoli
A
,
Singh
AA
,
Prange
KHM
, et al
.
The hematopoietic transcription factors RUNX1 and ERG prevent AML1-ETO oncogene overexpression and onset of the apoptosis program in t(8;21) AMLs
.
Cell Rep.
2016
;
17
(
8
):
2087
-
2100
.
53.
Sotoca
AM
,
Prange
KH
,
Reijnders
B
, et al
.
The oncofusion protein FUS-ERG targets key hematopoietic regulators and modulates the all-trans retinoic acid signaling pathway in t(16;21) acute myeloid leukemia
.
Oncogene.
2016
;
35
(
15
):
1965
-
1976
.
54.
Ramirez
F
,
Dundar
F
,
Diehl
S
,
Gruning
BA
,
Manke
T.
deepTools: a flexible platform for exploring deep-sequencing data
.
Nucleic Acids Res.
2014
;
42
(
Web Server issue
):
W187
-
W191
.
55.
Zanini
F
,
Berghuis
BA
,
Jones
RC
, et al
.
Northstar enables automatic classification of known and novel cell types from tumor samples
.
Sci Rep.
2020
;
10
(
1
):
15251
.
56.
La Manno
G
,
Soldatov
R
,
Zeisel
A
, et al
.
RNA velocity of single cells
.
Nature.
2018
;
560
(
7719
):
494
-
498
.
57.
Bergen
V
,
Lange
M
,
Peidli
S
,
Wolf
FA
,
Theis
FJ.
Generalizing RNA velocity to transient cell states through dynamical modeling
.
Nat Biotechnol.
2020
;
38
(
12
):
1408
-
1414
.
58.
Yamazaki
H
,
Suzuki
M
,
Otsuki
A
, et al
.
A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression
.
Cancer Cell.
2014
;
25
(
4
):
415
-
427
.
59.
Gröschel
S
,
Sanders
MA
,
Hoogenboezem
R
, et al
.
A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia
.
Cell.
2014
;
157
(
2
):
369
-
381
.
60.
Rücker
FG
,
Sander
S
,
Döhner
K
,
Döhner
H
,
Pollack
JR
,
Bullinger
L.
Molecular profiling reveals myeloid leukemia cell lines to be faithful model systems characterized by distinct genomic aberrations
.
Leukemia.
2006
;
20
(
6
):
994
-
1001
.
61.
van Galen
P
,
Hovestadt
V
,
Wadsworth Ii
MH
, et al
.
Single-Cell RNA-Seq Reveals AML Hierarchies Relevant to Disease Progression and Immunity
.
Cell.
2019
;
176
(
6
):
1265
-
1281.e24
.
62.
Yanagisawa
K
,
Horiuchi
T
,
Fujita
S.
Establishment and characterization of a new human leukemia cell line derived from M4E0
.
Blood.
1991
;
78
(
2
):
451
-
457
.
63.
Yi
G
,
Mandoli
A
,
Jussen
L
, et al
.
CBFβ-MYH11 interferes with megakaryocyte differentiation via modulating a gene program that includes GATA2 and KLF1
.
Blood Cancer J.
2019
;
9
(
3
):
33
.
64.
Tursky
ML
,
Beck
D
,
Thoms
JA
, et al
.
Overexpression of ERG in cord blood progenitors promotes expansion and recapitulates molecular signatures of high ERG leukemias
.
Leukemia.
2015
;
29
(
4
):
819
-
827
.
65.
Kucinski
I
,
Wilson
NK
,
Hannah
R
, et al
.
Interactions between lineage-associated transcription factors govern haematopoietic progenitor states
.
EMBO J.
2020
;
39
(
24
):
e104983
.
66.
Johnson
KD
,
Conn
DJ
,
Shishkova
E
, et al
.
Constructing and deconstructing GATA2-regulated cell fate programs to establish developmental trajectories
.
J Exp Med.
2020
;
217
(
11
):
e20191526
.
67.
Aqaqe
N
,
Yassin
M
,
Yassin
AA
, et al
.
An ERG enhancer-based reporter identifies leukemia cells with elevated leukemogenic potential driven by ERG-USP9X feed-forward regulation
.
Cancer Res.
2019
;
79
(
15
):
3862
-
3876
.
68.
Yassin
M
,
Aqaqe
N
,
Yassin
AA
, et al
.
A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity
.
Leukemia.
2019
;
33
(
8
):
2061
-
2077
.
69.
Osada
H
,
Grutz
G
,
Axelson
H
,
Forster
A
,
Rabbitts
TH.
Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1
.
Proc Natl Acad Sci USA.
1995
;
92
(
21
):
9585
-
9589
.
70.
Wadman
I
,
Li
J
,
Bash
RO
, et al
.
Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia
.
EMBO J.
1994
;
13
(
20
):
4831
-
4839
.
71.
Donaldson
IJ
,
Chapman
M
,
Kinston
S
, et al
.
Genome-wide identification of cis-regulatory sequences controlling blood and endothelial development
.
Hum Mol Genet.
2005
;
14
(
5
):
595
-
601
.
72.
Pimanda
JE
,
Ottersbach
K
,
Knezevic
K
, et al
.
Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development
.
Proc Natl Acad Sci USA.
2007
;
104
(
45
):
17692
-
17697
.
73.
Wontakal
SN
,
Guo
X
,
Smith
C
, et al
.
A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation
.
Proc Natl Acad Sci USA.
2012
;
109
(
10
):
3832
-
3837
.
74.
Eich
C
,
Arlt
J
,
Vink
CS
, et al
.
In vivo single cell analysis reveals Gata2 dynamics in cells transitioning to hematopoietic fate
.
J Exp Med.
2018
;
215
(
1
):
233
-
248
.
75.
Menendez-Gonzalez
JB
,
Vukovic
M
,
Abdelfattah
A
, et al
.
Gata2 as a crucial regulator of stem cells in adult hematopoiesis and acute myeloid leukemia
.
Stem Cell Reports.
2019
;
13
(
2
):
291
-
306
.
76.
Hahn
CN
,
Chong
CE
,
Carmichael
CL
, et al
.
Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia
.
Nat Genet.
2011
;
43
(
10
):
1012
-
1017
.
77.
Vicente
C
,
Vazquez
I
,
Conchillo
A
, et al
.
Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities
.
Leukemia.
2012
;
26
(
3
):
550
-
554
.
78.
Lancrin
C
,
Sroczynska
P
,
Stephenson
C
,
Allen
T
,
Kouskoff
V
,
Lacaud
G.
The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage
.
Nature.
2009
;
457
(
7231
):
892
-
895
.
79.
Elwood
NJ
,
Zogos
H
,
Pereira
DS
,
Dick
JE
,
Begley
CG.
Enhanced megakaryocyte and erythroid development from normal human CD34(+) cells: consequence of enforced expression of SCL
.
Blood.
1998
;
91
(
10
):
3756
-
3765
.
80.
Mikkola
HK
,
Klintman
J
,
Yang
H
, et al
.
Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene
.
Nature.
2003
;
421
(
6922
):
547
-
551
.
81.
Robertson
SM
,
Kennedy
M
,
Shannon
JM
,
Keller
G.
A transitional stage in the commitment of mesoderm to hematopoiesis requiring the transcription factor SCL/tal-1
.
Development.
2000
;
127
(
11
):
2447
-
2459
.
82.
Taoudi
S
,
Bee
T
,
Hilton
A
, et al
.
ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification
.
Genes Dev.
2011
;
25
(
3
):
251
-
262
.
83.
Knudsen
KJ
,
Rehn
M
,
Hasemann
MS
, et al
.
ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation
.
Genes Dev.
2015
;
29
(
18
):
1915
-
1929
.
84.
Marcucci
G
,
Maharry
K
,
Whitman
SP
, et al;
Cancer and Leukemia Group B Study
.
High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B Study
.
J Clin Oncol.
2007
;
25
(
22
):
3337
-
3343
.
85.
Schwind
S
,
Marcucci
G
,
Maharry
K
, et al
.
BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study
.
Blood.
2010
;
116
(
25
):
5660
-
5669
.
86.
Metzeler
KH
,
Dufour
A
,
Benthaus
T
, et al
.
ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays
.
J Clin Oncol.
2009
;
27
(
30
):
5031
-
5038
.
87.
Thoms
JA
,
Birger
Y
,
Foster
S
, et al
.
ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer
.
Blood.
2011
;
117
(
26
):
7079
-
7089
.
88.
Goldberg
L
,
Tijssen
MR
,
Birger
Y
, et al
.
Genome-scale expression and transcription factor binding profiles reveal therapeutic targets in transgenic ERG myeloid leukemia
.
Blood.
2013
;
122
(
15
):
2694
-
2703
.
89.
Carmichael
CL
,
Metcalf
D
,
Henley
KJ
, et al
.
Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia
.
Proc Natl Acad Sci USA.
2012
;
109
(
38
):
15437
-
15442
.
90.
Salek-Ardakani
S
,
Smooha
G
,
de Boer
J
, et al
.
ERG is a megakaryocytic oncogene
.
Cancer Res.
2009
;
69
(
11
):
4665
-
4673
.
91.
Nowak
D
,
Stewart
D
,
Koeffler
HP.
Differentiation therapy of leukemia: 3 decades of development
.
Blood.
2009
;
113
(
16
):
3655
-
3665
.
92.
Namasu
CY
,
Katzerke
C
,
Bräuer-Hartmann
D
, et al
.
ABR, a novel inducer of transcription factor C/EBPα, contributes to myeloid differentiation and is a favorable prognostic factor in acute myeloid leukemia
.
Oncotarget.
2017
;
8
(
61
):
103626
-
103639
.
93.
Radomska
HS
,
Jernigan
F
,
Nakayama
S
, et al
.
A cell-based high-throughput screening for inducers of myeloid differentiation
.
J Biomol Screen.
2015
;
20
(
9
):
1150
-
1159
.
94.
Antony-Debré
I
,
Paul
A
,
Leite
J
, et al
.
Pharmacological inhibition of the transcription factor PU.1 in leukemia
.
J Clin Invest.
2017
;
127
(
12
):
4297
-
4313
.
95.
Morita
K
,
Suzuki
K
,
Maeda
S
, et al
.
Genetic regulation of the RUNX transcription factor family has antitumor effects
.
J Clin Invest.
2017
;
127
(
7
):
2815
-
2828
.
96.
Wang
S
,
Kollipara
RK
,
Srivastava
N
, et al
.
Ablation of the oncogenic transcription factor ERG by deubiquitinase inhibition in prostate cancer
.
Proc Natl Acad Sci USA.
2014
;
111
(
11
):
4251
-
4256
.
You do not currently have access to this content.

Sign in via your Institution