• Lymphoma originating from CAR T cells produced with the piggyBac transposon system has been seen in 2 patients.

  • The first patient’s lymphoma shows alteration in gene copy number and expression not spatially or functionally related to the CAR gene.

We performed a phase 1 clinical trial to evaluate outcomes in patients receiving donor-derived CD19-specific chimeric antigen receptor (CAR) T cells for B-cell malignancy that relapsed or persisted after matched related allogeneic hemopoietic stem cell transplant. To overcome the cost and transgene-capacity limitations of traditional viral vectors, CAR T cells were produced using the piggyBac transposon system of genetic modification. Following CAR T-cell infusion, 1 patient developed a gradually enlarging retroperitoneal tumor due to a CAR-expressing CD4+ T-cell lymphoma. Screening of other patients led to the detection, in an asymptomatic patient, of a second CAR T-cell tumor in thoracic para-aortic lymph nodes. Analysis of the first lymphoma showed a high transgene copy number, but no insertion into typical oncogenes. There were also structural changes such as altered genomic copy number and point mutations unrelated to the insertion sites. Transcriptome analysis showed transgene promoter–driven upregulation of transcription of surrounding regions despite insulator sequences surrounding the transgene. However, marked global changes in transcription predominantly correlated with gene copy number rather than insertion sites. In both patients, the CAR T-cell–derived lymphoma progressed and 1 patient died. We describe the first 2 cases of malignant lymphoma derived from CAR gene–modified T cells. Although CAR T cells have an enviable record of safety to date, our results emphasize the need for caution and regular follow-up of CAR T recipients, especially when novel methods of gene transfer are used to create genetically modified immune therapies. This trial was registered at www.anzctr.org.au as ACTRN12617001579381.

1.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med.
2018
;
378
(
5
):
439
-
448
.
2.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med.
2017
;
377
(
26
):
2531
-
2544
.
3.
Hacein-Bey-Abina
S
,
Von Kalle
C
,
Schmidt
M
, et al
.
LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1
.
Science.
2003
;
302
(
5644
):
415
-
419
.
4.
Howe
SJ
,
Mansour
MR
,
Schwarzwaelder
K
, et al
.
Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients
.
J Clin Invest.
2008
;
118
(
9
):
3143
-
3150
.
5.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al
.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature.
2018
;
558
(
7709
):
307
-
312
.
6.
Shah
NN
,
Qin
H
,
Yates
B
, et al
.
Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy
.
Blood Adv.
2019
;
3
(
15
):
2317
-
2322
.
7.
Newrzela
S
,
Cornils
K
,
Heinrich
T
, et al
.
Retroviral insertional mutagenesis can contribute to immortalization of mature T lymphocytes
.
Mol Med.
2011
;
17
(
11-12
):
1223
-
1232
.
8.
Kebriaei
P
,
Singh
H
,
Huls
MH
, et al
.
Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells
.
J Clin Invest.
2016
;
126
(
9
):
3363
-
3376
.
9.
Manuri
PV
,
Wilson
MH
,
Maiti
SN
, et al
.
piggyBac transposon/transposase system to generate CD19-specific T cells for the treatment of B-lineage malignancies
.
Hum Gene Ther.
2010
;
21
(
4
):
427
-
437
.
10.
Morita
D
,
Nishio
N
,
Saito
S
, et al
.
Enhanced expression of anti-CD19 chimeric antigen receptor in piggyBac transposon-engineered T cells
.
Mol Ther Methods Clin Dev.
2017
;
8
:
131
-
140
.
11.
Saha
S
,
Nakazawa
Y
,
Huye
LE
, et al
.
piggyBac transposon system modification of primary human T cells
.
J Vis Exp.
2012
; (
69
):
e4235
.
12.
Ramanayake
S
,
Bilmon
I
,
Bishop
D
, et al
.
Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials
.
Cytotherapy.
2015
;
17
(
9
):
1251
-
1267
.
13.
Bishop
DC
,
Xu
N
,
Tse
B
, et al
.
PiggyBac-engineered T cells expressing CD19-specific CARs that lack IgG1 Fc spacers have potent activity against B-ALL xenografts
.
Mol Ther.
2018
;
26
(
8
):
1883
-
1895
.
14.
Bishop
DC
,
Clancy
LE
,
Simms
R
, et al
.
Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells
[letter].
Blood.
2021
;
1514
-
1519
.
15.
Singh
H
,
Figliola
MJ
,
Dawson
MJ
, et al
.
Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells
.
PLoS One.
2013
;
8
(
5
):
e64138
.
16.
Ryland
GL
,
Jones
K
,
Chin
M
, et al
.
Novel genomic findings in multiple myeloma identified through routine diagnostic sequencing
.
J Clin Pathol.
2018
;
71
(
10
):
895
-
899
.
17.
Markham
JF
,
Yerneni
S
,
Ryland
GL
, et al
.
CNspector: a web-based tool for visualisation and clinical diagnosis of copy number variation from next generation sequencing
[published correction appears in Sci Rep. 2020;10(1):10400].
Sci Rep.
2019
;
9
(
1
):
6426
.
18.
Brady
T
,
Roth
SL
,
Malani
N
, et al
.
A method to sequence and quantify DNA integration for monitoring outcome in gene therapy
.
Nucleic Acids Res.
2011
;
39
(
11
):
e72
.
19.
Kamboj
A
,
Hallwirth
CV
,
Alexander
IE
,
McCowage
GB
,
Kramer
B.
Ub-ISAP: a streamlined UNIX pipeline for mining unique viral vector integration sites from next generation sequencing data
.
BMC Bioinformatics.
2017
;
18
(
1
):
305
.
20.
Freed
D
,
Aldana
R
,
Weber
JA
,
Edwards
JS.
The Sentieon Genomics Tools - a fast and accurate solution to variant calling from next-generation sequence data
.
bioRxiv
. Preprint posted online 12 May 2017. doi:.
21.
Jeffares
DC
,
Jolly
C
,
Hoti
M
, et al
.
Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast
.
Nat Commun.
2017
;
8
:
14061
.
22.
Dennenmoser
S
,
Sedlazeck
FJ
,
Schatz
MC
,
Altmüller
J
,
Zytnicki
M
,
Nolte
AW.
Genome-wide patterns of transposon proliferation in an evolutionary young hybrid fish
.
Mol Ecol.
2019
;
28
(
6
):
1491
-
1505
.
23.
Rausch
T
,
Zichner
T
,
Schlattl
A
,
Stütz
AM
,
Benes
V
,
Korbel
JO.
DELLY: structural variant discovery by integrated paired-end and split-read analysis
.
Bioinformatics.
2012
;
28
(
18
):
i333
-
i339
.
24.
Layer
RM
,
Chiang
C
,
Quinlan
AR
,
Hall
IM.
LUMPY: a probabilistic framework for structural variant discovery
.
Genome Biol.
2014
;
15
(
6
):
R84
.
25.
Chen
X
,
Schulz-Trieglaff
O
,
Shaw
R
, et al
.
Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications
.
Bioinformatics.
2016
;
32
(
8
):
1220
-
1222
.
26.
Heinz
S
,
Benner
C
,
Spann
N
, et al
.
Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
.
Mol Cell.
2010
;
38
(
4
):
576
-
589
.
27.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics.
2013
;
29
(
1
):
15
-
21
.
28.
Robinson
JT
,
Thorvaldsdóttir
H
,
Winckler
W
, et al
.
Integrative genomics viewer
.
Nat Biotechnol.
2011
;
29
(
1
):
24
-
26
.
29.
Lawrence
M
,
Huber
W
,
Pagès
H
, et al
.
Software for computing and annotating genomic ranges
.
PLOS Comput Biol.
2013
;
9
(
8
):
e1003118
.
30.
Lawrence
M
,
Gentleman
R
,
Carey
V.
rtracklayer: an R package for interfacing with genome browsers
.
Bioinformatics.
2009
;
25
(
14
):
1841
-
1842
.
31.
Yu
G
,
Wang
LG
,
Han
Y
,
He
QY.
clusterProfiler: an R package for comparing biological themes among gene clusters
.
OMICS.
2012
;
16
(
5
):
284
-
287
.
32.
Wickham
H
,
Averick
M
,
Bryan
J
, et al
.
Welcome to the Tidyverse
.
J Open Source Softw.
2019
;
4
(
43
):
1686
.
33.
Shugay
M
,
Bagaev
DV
,
Zvyagin
IV
, et al
.
VDJdb: a curated database of T-cell receptor sequences with known antigen specificity
.
Nucleic Acids Res.
2018
;
46
(
D1
):
D419
-
D427
.
34.
Salter
AI
,
Ivey
RG
,
Kennedy
JJ
, et al
.
Phosphoproteomic analysis of chimeric antigen receptor signaling reveals kinetic and quantitative differences that affect cell function
.
Sci Signal.
2018
;
11
(
544
):
eaat6753
.
35.
Tate
JG
,
Bamford
S
,
Jubb
HC
, et al
.
COSMIC: the Catalogue Of Somatic Mutations In Cancer
.
Nucleic Acids Res.
2019
;
47
(
D1
):
D941
-
D947
.
36.
Galvan
DL
,
Nakazawa
Y
,
Kaja
A
, et al
.
Genome-wide mapping of PiggyBac transposon integrations in primary human T cells
.
J Immunother.
2009
;
32
(
8
):
837
-
844
.
37.
Hamada
M
,
Nishio
N
,
Okuno
Y
, et al
.
Integration mapping of piggyBac-mediated CD19 chimeric antigen receptor T cells analyzed by novel tagmentation-assisted PCR
.
EBioMedicine.
2018
;
34
:
18
-
26
.
38.
Li
X
,
Ewis
H
,
Hice
RH
, et al
.
A resurrected mammalian hAT transposable element and a closely related insect element are highly active in human cell culture
.
Proc Natl Acad Sci USA.
2013
;
110
(
6
):
E478
-
E487
.
39.
Mahmoud
M
,
Gobet
N
,
Cruz-Dávalos
DI
,
Mounier
N
,
Dessimoz
C
,
Sedlazeck
FJ.
Structural variant calling: the long and the short of it
.
Genome Biol.
2019
;
20
(
1
):
246
.
40.
Aganezov
S
,
Goodwin
S
,
Sherman
RM
, et al
.
Comprehensive analysis of structural variants in breast cancer genomes using single-molecule sequencing
.
Genome Res.
2020
;
30
(
9
):
1258
-
1273
.
41.
Sedlazeck
FJ
,
Rescheneder
P
,
Smolka
M
, et al
.
Accurate detection of complex structural variations using single-molecule sequencing
.
Nat Methods.
2018
;
15
(
6
):
461
-
468
.
42.
Chung
JH
,
Bell
AC
,
Felsenfeld
G.
Characterization of the chicken beta-globin insulator
.
Proc Natl Acad Sci USA.
1997
;
94
(
2
):
575
-
580
.
43.
Sugie
K
,
Jeon
MS
,
Grey
HM.
Activation of naïve CD4 T cells by anti-CD3 reveals an important role for Fyn in Lck-mediated signaling
.
Proc Natl Acad Sci USA.
2004
;
101
(
41
):
14859
-
14864
.
44.
Kataoka
K
,
Nagata
Y
,
Kitanaka
A
, et al
.
Integrated molecular analysis of adult T cell leukemia/lymphoma
.
Nat Genet.
2015
;
47
(
11
):
1304
-
1315
.
45.
Muragaki
Y
,
Mattei
MG
,
Yamaguchi
N
,
Olsen
BR
,
Ninomiya
Y.
The complete primary structure of the human alpha 1 (VIII) chain and assignment of its gene (COL8A1) to chromosome 3
.
Eur J Biochem.
1991
;
197
(
3
):
615
-
622
.
46.
Liu
X
,
Wu
J
,
Zhang
D
, et al
.
Identification of potential key genes associated with the pathogenesis and prognosis of gastric cancer based on integrated bioinformatics analysis
.
Front Genet.
2018
;
9
:
265
.
47.
Patsoukis
N
,
Duke-Cohan
JS
,
Chaudhri
A
, et al
.
Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation
.
Commun Biol.
2020
;
3
(
1
):
128
.
48.
Richer
MJ
,
Lang
ML
,
Butler
NS.
T cell fates zipped up: how the Bach2 basic leucine zipper transcriptional repressor directs T cell differentiation and function
.
J Immunol.
2016
;
197
(
4
):
1009
-
1015
.
49.
Sakane-Ishikawa
E
,
Nakatsuka
S
,
Tomita
Y
, et al;
Osaka Lymphoma Study Group
.
Prognostic significance of BACH2 expression in diffuse large B-cell lymphoma: a study of the Osaka Lymphoma Study Group
.
J Clin Oncol.
2005
;
23
(
31
):
8012
-
8017
.
50.
Ichikawa
S
,
Fukuhara
N
,
Katsushima
H
, et al
.
Association between BACH2 expression and clinical prognosis in diffuse large B-cell lymphoma
.
Cancer Sci.
2014
;
105
(
4
):
437
-
444
.
51.
Liu
J
,
Sørensen
AB
,
Wang
B
,
Wabl
M
,
Nielsen
AL
,
Pedersen
FS.
Identification of novel Bach2 transcripts and protein isoforms through tagging analysis of retroviral integrations in B-cell lymphomas
.
BMC Mol Biol.
2009
;
10
:
2
.
52.
Ikeda
T
,
Shibata
J
,
Yoshimura
K
,
Koito
A
,
Matsushita
S.
Recurrent HIV-1 integration at the BACH2 locus in resting CD4+ T cell populations during effective highly active antiretroviral therapy
.
J Infect Dis.
2007
;
195
(
5
):
716
-
725
.
53.
Cesana
D
,
Santoni de Sio
FR
,
Rudilosso
L
, et al
.
HIV-1-mediated insertional activation of STAT5B and BACH2 trigger viral reservoir in T regulatory cells
.
Nat Commun.
2017
;
8
(
1
):
498
.
54.
Newrzela
S
,
Al-Ghaili
N
,
Heinrich
T
, et al
.
T-cell receptor diversity prevents T-cell lymphoma development
.
Leukemia.
2012
;
26
(
12
):
2499
-
2507
.
55.
Scholler
J
,
Brady
TL
,
Binder-Scholl
G
, et al
.
Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells
.
Sci Transl Med.
2012
;
4
(
132
):
132ra53
.
56.
Recchia
A
,
Bonini
C
,
Magnani
Z
, et al
.
Retroviral vector integration deregulates gene expression but has no consequence on the biology and function of transplanted T cells
.
Proc Natl Acad Sci USA.
2006
;
103
(
5
):
1457
-
1462
.
57.
Sheih
A
,
Voillet
V
,
Hanafi
LA
, et al
.
Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy
.
Nat Commun.
2020
;
11
(
1
):
219
.
58.
Nakazawa
Y
,
Saha
S
,
Galvan
DL
, et al
.
Evaluation of long-term transgene expression in piggyBac-modified human T lymphocytes
.
J Immunother.
2013
;
36
(
1
):
3
-
10
.
59.
Nakazawa
Y
,
Huye
LE
,
Salsman
VS
, et al
.
PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor
.
Mol Ther.
2011
;
19
(
12
):
2133
-
2143
.
60.
Saito
S
,
Nakazawa
Y
,
Sueki
A
, et al
.
Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia
.
Cytotherapy.
2014
;
16
(
9
):
1257
-
1269
.
61.
Gregory
T
,
Cohen
AD
,
Costello
CL
, et al
.
Efficacy and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM)
[abstract].
Blood.
2018
;
132
(
suppl 1
):
1012
.
62.
Costello
CL
,
Gregory
TK
,
Ali
SA
, et al
.
Phase 2 study of the response and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME)
[abstract].
Blood.
2019
;
134
(
suppl 1
):
3184
.
63.
Milone
MC
,
Fish
JD
,
Carpenito
C
, et al
.
Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo
.
Mol Ther.
2009
;
17
(
8
):
1453
-
1464
.
64.
Porter
DL
,
Levine
BL
,
Kalos
M
,
Bagg
A
,
June
CH.
Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia
.
N Engl J Med.
2011
;
365
(
8
):
725
-
733
.
65.
Ramezani
A
,
Hawley
TS
,
Hawley
RG.
Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator
.
Blood.
2003
;
101
(
12
):
4717
-
4724
.
66.
Cavazzana-Calvo
M
,
Payen
E
,
Negre
O
, et al
.
Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia
.
Nature.
2010
;
467
(
7313
):
318
-
322
.
67.
Arumugam
PI
,
Higashimoto
T
,
Urbinati
F
, et al
.
Genotoxic potential of lineage-specific lentivirus vectors carrying the beta-globin locus control region
.
Mol Ther.
2009
;
17
(
11
):
1929
-
1937
.
68.
Grosso
AR
,
Leite
AP
,
Carvalho
S
, et al
.
Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma
.
eLife.
2015
;
4
:
e09214
.
69.
Ambrosini
G
,
Groux
R
,
Bucher
P.
PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix
.
Bioinformatics.
2018
;
34
(
14
):
2483
-
2484
.
70.
Gu
Z
,
Gu
L
,
Eils
R
,
Schlesner
M
,
Brors
B.
circlize implements and enhances circular visualization in R
.
Bioinformatics.
2014
;
30
(
19
):
2811
-
2812
.
You do not currently have access to this content.

Sign in via your Institution