Key Points

  • scRNA-seq unveils universal MAPK activation in circulating cells and potential therapeutic mechanisms of BRAF inhibitor in pediatric LCH.

  • Decreased frequency of circulating pDCs is significantly associated with disease severity in pediatric LCH.

Abstract

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm caused by aberrant activation of the mitogen-activated protein kinase (MAPK) pathway. Circulating myeloid cells from patients often carry disease-associated mutations and can be differentiated into langerinhigh LCH-like cells in vitro, but their detailed immune-phenotypic and molecular profiles are lacking and could shed key insights into disease biology. Here we recruited 217 pediatric LCH patients and took blood and tissue samples for BRAFV600E analysis. Immune-phenotyping of the circulating LinHLA-DR+ immune population in 49 of these patients revealed that decreased frequency of plasmacytoid dendritic cells was significantly linked to disease severity. By single-cell RNA sequencing of samples from 14 patients, we identified key changes in expression of RAS-MAPK-extracellular signal-regulated kinase (ERK) signaling-related genes and transcription factors in distinct members of the mononuclear phagocyte system in the presence of BRAFV600E. Moreover, treatment of patients with the BRAF inhibitor dabrafenib resulted in MAPK cascade inhibition, inflammation prevention, and regulation of cellular metabolism within mononuclear phagocytes. Finally, we also observed elevated expression of RAS-MAPK-ERK signaling-related genes in a CD207+CD1a+ cell subcluster in skin. Taken together, our data extend the molecular understanding of LCH biology at single-cell resolution, which might contribute to improvement of clinical diagnostics and therapeutics, and aid in the development of personalized medicine approaches.

REFERENCES

1.
Allen
CE
,
Merad
M
,
McClain
KL
.
Langerhans-cell histiocytosis
.
N Engl J Med.
2018
;
379
(
9
):
856
-
868
.
2.
Badalian-Very
G
,
Vergilio
JA
,
Degar
BA
, et al
.
Recurrent BRAF mutations in Langerhans cell histiocytosis
.
Blood.
2010
;
116
(
11
):
1919
-
1923
.
3.
Milne
P
,
Bigley
V
,
Bacon
CM
, et al
.
Hematopoietic origin of Langerhans cell histiocytosis and Erdheim-Chester disease in adults
.
Blood.
2017
;
130
(
2
):
167
-
175
.
4.
Quispel
WT
,
Stegehuis-Kamp
JA
,
Blijleven
L
, et al
.
The presence of CXCR4+ CD1a+ cells at onset of Langerhans cell histiocytosis is associated with a less favorable outcome
.
OncoImmunology.
2015
;
5
(
3
):
e1084463
.
5.
Allen
CE
,
Li
L
,
Peters
TL
, et al
.
Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells
.
J Immunol.
2010
;
184
(
8
):
4557
-
4567
.
6.
Allen
CE
,
Beverley
PCL
,
Collin
M
, et al
.
The coming of age of Langerhans cell histiocytosis
.
Nat Immunol.
2020
;
21
(
1
):
1
-
7
.
7.
Rolland
A
,
Guyon
L
,
Gill
M
, et al
.
Increased blood myeloid dendritic cells and dendritic cell-poietins in Langerhans cell histiocytosis
.
J Immunol.
2005
;
174
(
5
):
3067
-
3071
.
8.
Morimoto
A
,
Oh
Y
,
Nakamura
S
, et al;
Japan Langerhans cell histiocytosis Study Group
.
Inflammatory serum cytokines and chemokines increase associated with the disease extent in pediatric Langerhans cell histiocytosis
.
Cytokine.
2017
;
97
:
73
-
79
.
9.
Chellapandian
D
,
Hines
MR
,
Zhang
R
, et al
.
A multicenter study of patients with multisystem Langerhans cell histiocytosis who develop secondary hemophagocytic lymphohistiocytosis
.
Cancer.
2019
;
125
(
6
):
963
-
971
.
10.
Haupt
R
,
Minkov
M
,
Astigarraga
I
, et al;
Euro Histio Network
.
Langerhans cell histiocytosis (LCH): guidelines for diagnosis, clinical work-up, and treatment for patients till the age of 18 years
.
Pediatr Blood Cancer.
2013
;
60
(
2
):
175
-
184
.
11.
Haroche
J
,
Cohen-Aubart
F
,
Emile
JF
, et al
.
Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation
.
Blood.
2013
;
121
(
9
):
1495
-
1500
.
12.
Diamond
EL
,
Durham
BH
,
Haroche
J
, et al
.
Diverse and targetable kinase alterations drive histiocytic neoplasms
.
Cancer Discov.
2016
;
6
(
2
):
154
-
165
.
13.
Hyman
DM
,
Puzanov
I
,
Subbiah
V
, et al
.
Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations
.
N Engl J Med.
2015
;
373
(
8
):
726
-
736
.
14.
Eckstein
OS
,
Visser
J
,
Rodriguez-Galindo
C
,
Allen
CE
;
NACHO-LIBRE Study Group
.
Clinical responses and persistent BRAF V600E+ blood cells in children with LCH treated with MAPK pathway inhibition
.
Blood.
2019
;
133
(
15
):
1691
-
1694
.
15.
Donadieu
J
,
Larabi
IA
,
Tardieu
M
, et al
.
Vemurafenib for refractory multisystem langerhans cell histiocytosis in children: an international observational study
.
J Clin Oncol.
2019
;
37
(
31
):
2857
-
2865
.
16.
Kolenová
A
,
Schwentner
R
,
Jug
G
, et al
.
Targeted inhibition of the MAPK pathway: emerging salvage option for progressive life-threatening multisystem LCH
.
Blood Adv.
2017
;
1
(
6
):
352
-
356
.
17.
Hutter
C
,
Kauer
M
,
Simonitsch-Klupp
I
, et al
.
Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
.
Blood.
2012
;
120
(
26
):
5199
-
5208
.
18.
Schwentner
R
,
Jug
G
,
Kauer
MO
, et al
.
JAG2 signaling induces differentiation of CD14+ monocytes into Langerhans cell histiocytosis-like cells
.
J Leukoc Biol.
2019
;
105
(
1
):
101
-
111
.
19.
Bian
Z
,
Gong
Y
,
Huang
T
, et al
.
Deciphering human macrophage development at single-cell resolution
.
Nature.
2020
;
582
(
7813
):
571
-
576
.
20.
Picelli
S
,
Björklund
AK
,
Faridani
OR
,
Sagasser
S
,
Winberg
G
,
Sandberg
R
.
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
.
Nat Methods.
2013
;
10
(
11
):
1096
-
1098
.
21.
Picelli
S
,
Faridani
OR
,
Björklund
AK
,
Winberg
G
,
Sagasser
S
,
Sandberg
R
.
Full-length RNA-seq from single cells using Smart-seq2
.
Nat Protoc.
2014
;
9
(
1
):
171
-
181
.
22.
Li
L
,
Dong
J
,
Yan
L
, et al
.
Single-cell RNA-Seq analysis maps development of human germline cells and gonadal niche interactions [correction published in Cell Stem Cell. 2017;20(6):P891-P892]
.
Cell Stem Cell.
2017
;
20
(
6
):
858
-
873.e4
.
23.
Cui
L
,
Zhang
L
,
Ma
HH
, et al
.
Circulating cell-free BRAF V600E during chemotherapy is associated with prognosis of children with Langerhans cell histiocytosis
.
Haematologica.
2020
;
105
(
9
):
e444
-
e447
.
24.
Héritier
S
,
Hélias-Rodzewicz
Z
,
Lapillonne
H
, et al
.
Circulating cell-free BRAFV600E as a biomarker in children with Langerhans cell histiocytosis
.
Br J Haematol.
2017
;
178
(
3
):
457
-
467
.
25.
Berres
ML
,
Lim
KP
,
Peters
T
, et al
.
BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups [correction published in J Exp Med. 2015;212(2):281]
.
J Exp Med.
2014
;
211
(
4
):
669
-
683
.
26.
Hyman
DM
,
Diamond
EL
,
Vibat
CR
, et al
.
Prospective blinded study of BRAFV600E mutation detection in cell-free DNA of patients with systemic histiocytic disorders
.
Cancer Discov.
2015
;
5
(
1
):
64
-
71
.
27.
Geest
CR
,
Coffer
PJ
.
MAPK signaling pathways in the regulation of hematopoiesis
.
J Leukoc Biol.
2009
;
86
(
2
):
237
-
250
.
28.
Hsu
CL
,
Kikuchi
K
,
Kondo
M
.
Activation of mitogen-activated protein kinase kinase (MEK)/extracellular signal regulated kinase (ERK) signaling pathway is involved in myeloid lineage commitment
.
Blood.
2007
;
110
(
5
):
1420
-
1428
.
29.
Dutertre
CA
,
Becht
E
,
Irac
SE
, et al
.
Single-cell analysis of human mononuclear phagocytes reveals subset-defining markers and identifies circulating inflammatory dendritic cells
.
Immunity.
2019
;
51
(
3
):
573
-
589.e8
.
30.
Cytlak
U
,
Resteu
A
,
Pagan
S
, et al
.
Differential IRF8 transcription factor requirement defines two pathways of dendritic cell development in humans
.
Immunity.
2020
;
53
(
2
):
353
-
370.e8
.
31.
Koltai
T
.
Clusterin: a key player in cancer chemoresistance and its inhibition
.
OncoTargets Ther.
2014
;
7
:
447
-
456
.
32.
McClain
KL
,
Picarsic
J
,
Chakraborty
R
, et al
.
CNS Langerhans cell histiocytosis: common hematopoietic origin for LCH-associated neurodegeneration and mass lesions
.
Cancer.
2018
;
124
(
12
):
2607
-
2620
.
33.
Shannon
P
,
Markiel
A
,
Ozier
O
, et al
.
Cytoscape: a software environment for integrated models of biomolecular interaction networks
.
Genome Res.
2003
;
13
(
11
):
2498
-
2504
.
34.
Radford
KJ
,
Thorne
RF
,
Hersey
P
.
Regulation of tumor cell motility and migration by CD63 in a human melanoma cell line
.
J Immunol.
1997
;
158
(
7
):
3353
-
3358
.
35.
Ushizawa
K
,
Takahashi
T
,
Kaneyama
K
,
Hosoe
M
,
Hashizume
K
.
Cloning of the bovine antiapoptotic regulator, BCL2-related protein A1, and its expression in trophoblastic binucleate cells of bovine placenta
.
Biol Reprod.
2006
;
74
(
2
):
344
-
351
.
36.
Krones-Herzig
A
,
Mittal
S
,
Yule
K
, et al
.
Early growth response 1 acts as a tumor suppressor in vivo and in vitro via regulation of p53
.
Cancer Res.
2005
;
65
(
12
):
5133
-
5143
.
37.
Gao
J
,
Ulekleiv
CH
,
Halstensen
TS
.
Epidermal growth factor (EGF) receptor-ligand based molecular staging predicts prognosis in head and neck squamous cell carcinoma partly due to deregulated EGF- induced amphiregulin expression
.
J Exp Clin Cancer Res.
2016
;
35
(
1
):
151
.
38.
Yu
F
,
Xie
D
,
Ng
SS
, et al
.
IFITM1 promotes the metastasis of human colorectal cancer via CAV-1
.
Cancer Lett.
2015
;
368
(
1
):
135
-
143
.
39.
Wan
B
,
Liu
B
,
Huang
Y
,
Lv
C
.
Identification of genes of prognostic value in the ccRCC microenvironment from TCGA database
.
Mol Genet Genomic Med.
2020
;
8
(
4
):
e1159
.
40.
Ascierto
ML
,
Kmieciak
M
,
Idowu
MO
, et al
.
A signature of immune function genes associated with recurrence-free survival in breast cancer patients
.
Breast Cancer Res Treat.
2012
;
131
(
3
):
871
-
880
.
41.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA.
2005
;
102
(
43
):
15545
-
15550
.
42.
Fulda
S
,
Gorman
AM
,
Hori
O
,
Samali
A
.
Cellular stress responses: cell survival and cell death
.
Int J Cell Biol.
2010
;
2010
:
214074
.
43.
Héritier
S
,
Emile
JF
,
Hélias-Rodzewicz
Z
,
Donadieu
J
.
Progress towards molecular-based management of childhood Langerhans cell histiocytosis
.
Arch Pediatr.
2019
;
26
(
5
):
301
-
307
.
44.
Fleming
MD
,
Pinkus
JL
,
Fournier
MV
, et al
.
Coincident expression of the chemokine receptors CCR6 and CCR7 by pathologic Langerhans cells in Langerhans cell histiocytosis
.
Blood.
2003
;
101
(
7
):
2473
-
2475
.
45.
Bullens
DM
,
Rafiq
K
,
Charitidou
L
, et al
.
Effects of co-stimulation by CD58 on human T cell cytokine production: a selective cytokine pattern with induction of high IL-10 production
.
Int Immunol.
2001
;
13
(
2
):
181
-
191
.
46.
Halbritter
F
,
Farlik
M
,
Schwentner
R
, et al
.
Epigenomics and single-cell sequencing define a developmental hierarchy in langerhans cell histiocytosis
.
Cancer Discov.
2019
;
9
(
10
):
1406
-
1421
.
47.
Jouenne
F
,
Chevret
S
,
Bugnet
E
, et al
.
Genetic landscape of adult Langerhans cell histiocytosis with lung involvement
.
Eur Respir J.
2020
;
55
(
2
):
1901190
.
48.
Villani
AC
,
Satija
R
,
Reynolds
G
, et al
.
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
.
Science.
2017
;
356
(
6335
):
eaah4573
.
49.
Proietti
I
,
Skroza
N
,
Michelini
S
, et al
.
BRAF inhibitors: molecular targeting and immunomodulatory actions
.
Cancers (Basel).
2020
;
12
(
7
):
E1823
.
50.
Frederick
DT
,
Piris
A
,
Cogdill
AP
, et al
.
BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma
.
Clin Cancer Res.
2013
;
19
(
5
):
1225
-
1231
.
51.
Sumimoto
H
,
Imabayashi
F
,
Iwata
T
,
Kawakami
Y
.
The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells
.
J Exp Med.
2006
;
203
(
7
):
1651
-
1656
.
52.
Hutton
JE
,
Wang
X
,
Zimmerman
LJ
, et al
.
Oncogenic KRAS and BRAF drive metabolic reprogramming in colorectal cancer
.
Mol Cell Proteomics.
2016
;
15
(
9
):
2924
-
2938
.
53.
Marchetti
P
,
Trinh
A
,
Khamari
R
,
Kluza
J
.
Melanoma metabolism contributes to the cellular responses to MAPK/ERK pathway inhibitors
.
Biochim Biophys Acta, Gen Subj.
2018
;
1862
(
4
):
999
-
1005
.
54.
Lourda
M
,
Olsson-Åkefeldt
S
,
Gavhed
D
, et al
.
Detection of IL-17A-producing peripheral blood monocytes in Langerhans cell histiocytosis patients
.
Clin Immunol.
2014
;
153
(
1
):
112
-
122
.
55.
Dress
RJ
,
Dutertre
CA
,
Giladi
A
, et al
.
Plasmacytoid dendritic cells develop from Ly6D+ lymphoid progenitors distinct from the myeloid lineage
.
Nat Immunol.
2019
;
20
(
7
):
852
-
864
.
56.
Rodrigues
PF
,
Alberti-Servera
L
,
Eremin
A
,
Grajales-Reyes
GE
,
Ivanek
R
,
Tussiwand
R
.
Distinct progenitor lineages contribute to the heterogeneity of plasmacytoid dendritic cells
.
Nat Immunol.
2018
;
19
(
7
):
711
-
722
.
You do not currently have access to this content.

Sign in via your Institution

Sign In