Key Points

  • Whole-genome sequencing of CTCLs identifies novel putative driver genes and stage-specific genetic alterations.

  • PD1 deletions lead to reversal of T-cell exhaustion signatures in humans and mice and are associated with a worse prognosis.

Abstract

Cutaneous T-cell lymphomas (CTCLs) are a clinically heterogeneous collection of lymphomas of the skin-homing T cell. To identify molecular drivers of disease phenotypes, we assembled representative samples of CTCLs from patients with diverse disease subtypes and stages. Via DNA/RNA-sequencing, immunophenotyping, and ex vivo functional assays, we identified the landscape of putative driver genes, elucidated genetic relationships between CTCLs across disease stages, and inferred molecular subtypes in patients with stage-matched leukemic disease. Collectively, our analysis identified 86 putative driver genes, including 19 genes not previously implicated in this disease. Two mutations have never been described in any cancer. Functionally, multiple mutations augment T-cell receptor–dependent proliferation, highlighting the importance of this pathway in lymphomagenesis. To identify putative genetic causes of disease heterogeneity, we examined the distribution of driver genes across clinical cohorts. There are broad similarities across disease stages. Many driver genes are shared by mycosis fungoides (MF) and Sezary syndrome (SS). However, there are significantly more structural variants in leukemic disease, leading to highly recurrent deletions of putative tumor suppressors that are uncommon in early-stage skin-centered MF. For example, TP53 is deleted in 7% and 87% of MF and SS, respectively. In both human and mouse samples, PD1 mutations drive aggressive behavior. PD1 wild-type lymphomas show features of T-cell exhaustion. PD1 deletions are sufficient to reverse the exhaustion phenotype, promote a FOXM1-driven transcriptional signature, and predict significantly worse survival. Collectively, our findings clarify CTCL genetics and provide novel insights into pathways that drive diverse disease phenotypes.

REFERENCES

1.
Qu
K
,
Zaba
LC
,
Satpathy
AT
, et al
.
Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors
.
Cancer Cell.
2017
;
32
(
1
):
27
-
41.e4
.
2.
de Masson
A
,
O’Malley
JT
,
Elco
CP
, et al
.
High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides
.
Sci Transl Med.
2018
;
10
(
440
):
eaar5894
.
3.
Choi
J
,
Goh
G
,
Walradt
T
, et al
.
Genomic landscape of cutaneous T cell lymphoma
.
Nat Genet.
2015
;
47
(
9
):
1011
-
1019
.
4.
Agar
NS
,
Wedgeworth
E
,
Crichton
S
, et al
.
Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal
.
J Clin Oncol.
2010
;
28
(
31
):
4730
-
4739
.
5.
Willemze
R
,
Jaffe
ES
,
Burg
G
, et al
.
WHO-EORTC classification for cutaneous lymphomas
.
Blood.
2005
;
105
(
10
):
3768
-
3785
.
6.
Park
J
,
Yang
J
,
Wenzel
AT
, et al
.
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E)
.
Blood.
2017
;
130
(
12
):
1430
-
1440
.
7.
Iqbal
J
,
Wright
G
,
Wang
C
, et al;
Lymphoma Leukemia Molecular Profiling Project and the International Peripheral T-cell Lymphoma Project
.
Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma
.
Blood.
2014
;
123
(
19
):
2915
-
2923
.
8.
Hristov
AC
,
Vonderheid
EC
,
Borowitz
MJ
.
Simplified flow cytometric assessment in mycosis fungoides and Sézary syndrome
.
Am J Clin Pathol.
2011
;
136
(
6
):
944
-
953
.
9.
Rao
DA
,
Gurish
MF
,
Marshall
JL
, et al
.
Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis
.
Nature.
2017
;
542
(
7639
):
110
-
114
.
10.
Levine
JH
,
Simonds
EF
,
Bendall
SC
, et al
.
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
.
Cell.
2015
;
162
(
1
):
184
-
197
.
11.
Daniels
J
,
Doukas
PG
,
Escala
MEM
, et al
.
Cellular origins and genetic landscape of cutaneous gamma delta T cell lymphomas
.
Nat Commun.
2020
;
11
(
1
):
1806
.
12.
Anders
S
,
Huber
W
.
Differential expression analysis for sequence count data
.
Genome Biol.
2010
;
11
(
10
):
R106
.
13.
Hänzelmann
S
,
Castelo
R
,
Guinney
J
.
GSVA: gene set variation analysis for microarray and RNA-seq data
.
BMC Bioinformatics.
2013
;
14
(
1
):
7
.
14.
Wartewig
T
,
Kurgyis
Z
,
Keppler
S
, et al
.
PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis [published correction appears in Nature. 2018;553(7687):238]
.
Nature.
2017
;
552
(
7683
):
121
-
125
.
15.
Lawrence
MS
,
Stojanov
P
,
Mermel
CH
, et al
.
Discovery and saturation analysis of cancer genes across 21 tumour types
.
Nature.
2014
;
505
(
7484
):
495
-
501
.
16.
Belkadi
A
,
Bolze
A
,
Itan
Y
, et al
.
Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants
.
Proc Natl Acad Sci USA.
2015
;
112
(
17
):
5473
-
5478
.
17.
Mermel
CH
,
Schumacher
SE
,
Hill
B
,
Meyerson
ML
,
Beroukhim
R
,
Getz
G
.
GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers
.
Genome Biol.
2011
;
12
(
4
):
R41
.
18.
Roychoudhuri
R
,
Clever
D
,
Li
P
, et al
.
BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers
.
Nat Immunol.
2016
;
17
(
7
):
851
-
860
.
19.
Luchtel
RA
,
Zimmermann
MT
,
Hu
G
, et al
.
Recurrent MSCE116K mutations in ALK-negative anaplastic large cell lymphoma
.
Blood.
2019
;
133
(
26
):
2776
-
2789
.
20.
Kataoka
K
,
Nagata
Y
,
Kitanaka
A
, et al
.
Integrated molecular analysis of adult T cell leukemia/lymphoma
.
2015
;
47
(
11
):
1304
-
1315
.
21.
Quaglino
P
,
Pimpinelli
N
,
Berti
E
, et al
.
Mycosis fungoides: disease evolution of the “lion queen” revisited
.
G Ital Dermatol Venereol.
2012
;
147
(
6
):
523
-
531
.
22.
Jones
CL
,
Degasperi
A
,
Grandi
V
, et al;
Genomics England Research Consortium
.
Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma
.
Sci Rep.
2021
;
11
(
1
):
3962
.
23.
Wang
L
,
Ni
X
,
Covington
KR
, et al
.
Genomic profiling of Sézary syndrome identifies alterations of key T cell signaling and differentiation genes
.
Nat Genet.
2015
;
47
(
12
):
1426
-
1434
.
24.
da Silva Almeida
AC
,
Abate
F
,
Khiabanian
H
, et al
.
The mutational landscape of cutaneous T cell lymphoma and Sézary syndrome
.
Nat Genet.
2015
;
47
(
12
):
1465
-
1470
.
25.
Ungewickell
A
,
Bhaduri
A
,
Rios
E
, et al
.
Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2
.
Nat Genet.
2015
;
47
(
9
):
1056
-
1060
.
26.
Vaqué
JP
,
Gómez-López
G
,
Monsálvez
V
, et al
.
PLCG1 mutations in cutaneous T-cell lymphomas
.
Blood.
2014
;
123
(
13
):
2034
-
2043
.
27.
Shifrut
E
,
Carnevale
J
,
Tobin
V
, et al
.
Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function
.
Cell.
2018
;
175
(
7
):
1958
-
1971 e1915
.
28.
Geginat
J
,
Sallusto
F
,
Lanzavecchia
A
.
Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4(+) T cells
.
J Exp Med.
2001
;
194
(
12
):
1711
-
1719
.
29.
Thommen
DS
,
Schumacher
TN
.
T cell dysfunction in cancer
.
Cancer Cell.
2018
;
33
(
4
):
547
-
562
.
30.
Morou
A
,
Brunet-Ratnasingham
E
,
Dubé
M
, et al
.
Altered differentiation is central to HIV-specific CD4+ T cell dysfunction in progressive disease
.
Nat Immunol.
2019
;
20
(
8
):
1059
-
1070
.
31.
van der Leun
AM
,
Thommen
DS
,
Schumacher
TN
.
CD8+ T cell states in human cancer: insights from single-cell analysis
.
Nat Rev Cancer.
2020
;
20
(
4
):
218
-
232
.
32.
McLane
LM
,
Abdel-Hakeem
MS
,
Wherry
EJ
.
CD8 T cell exhaustion during chronic viral infection and cancer
.
Annu Rev Immunol.
2019
;
37
(
1
):
457
-
495
.
33.
Gupta
PK
,
Godec
J
,
Wolski
D
, et al
.
CD39 expression identifies terminally exhausted CD8+ T cells
.
PLoS Pathog.
2015
;
11
(
10
):
e1005177
.
34.
Lachmann
A
,
Xu
H
,
Krishnan
J
,
Berger
SI
,
Mazloom
AR
,
Ma’ayan
A
.
ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments
.
Bioinformatics.
2010
;
26
(
19
):
2438
-
2444
.
35.
Myatt
SS
,
Lam
EWF
.
The emerging roles of forkhead box (Fox) proteins in cancer
.
Nat Rev Cancer.
2007
;
7
(
11
):
847
-
859
.
36.
Pechloff
K
,
Holch
J
,
Ferch
U
, et al
.
The fusion kinase ITK-SYK mimics a T cell receptor signal and drives oncogenesis in conditional mouse models of peripheral T cell lymphoma
.
J Exp Med.
2010
;
207
(
5
):
1031
-
1044
.
37.
Wartewig
T
,
Ruland
J
.
PD-1 tumor suppressor signaling in T cell lymphomas
.
Trends Immunol.
2019
;
40
(
5
):
403
-
414
.
38.
Shain
AH
,
Yeh
I
,
Kovalyshyn
I
, et al
.
The genetic evolution of melanoma from precursor lesions
.
N Engl J Med.
2015
;
373
(
20
):
1926
-
1936
.
39.
Campbell
JJ
,
Clark
RA
,
Watanabe
R
,
Kupper
TS
.
Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors
.
Blood.
2010
;
116
(
5
):
767
-
771
.
40.
Klicznik
MM
,
Morawski
PA
,
Höllbacher
B
, et al
.
Human CD4+ CD103+ cutaneous resident memory T cells are found in the circulation of healthy individuals
.
Sci Immunol.
2019
;
4
(
37
):
eaav8995
.
41.
Querfeld
C
,
Leung
S
,
Myskowski
PL
, et al
.
Primary T cells from cutaneous T-cell lymphoma skin explants display an exhausted immune checkpoint profile
.
Cancer Immunol Res.
2018
;
6
(
8
):
900
-
909
.
42.
Murray
D
,
McMurray
JL
,
Eldershaw
S
, et al
.
Progression of mycosis fungoides occurs through divergence of tumor immunophenotype by differential expression of HLA-DR
.
Blood Adv.
2019
;
3
(
4
):
519
-
530
.
43.
Damsky
WE
,
Choi
J
.
Genetics of cutaneous T cell lymphoma: from bench to bedside
.
Curr Treat Options Oncol.
2016
;
17
(
7
):
33
.
44.
Meyerson
HJ
,
Awadallah
A
,
Pavlidakey
P
,
Cooper
K
,
Honda
K
,
Miedler
J
.
Follicular center helper T-cell (TFH) marker positive mycosis fungoides/Sezary syndrome
.
Mod Pathol.
2013
;
26
(
1
):
32
-
43
.
You do not currently have access to this content.

Sign in via your Institution

Sign In