Key Points

  • Primary BM MKs have cellular heterogeneity with 3 functionally distinct subpopulations.

  • A unique CD53+ MK subpopulation possesses a monocytic-like transcriptional program with immunologic capabilities.

Abstract

Megakaryocytes (MKs), the platelet progenitor cells, play important roles in hematopoietic stem cell (HSC) maintenance and immunity. However, it is not known whether these diverse programs are executed by a single population or by distinct subsets of cells. Here, we manually isolated primary CD41+ MKs from the bone marrow (BM) of mice and human donors based on ploidy (2N-32N) and performed single-cell RNA sequencing analysis. We found that cellular heterogeneity existed within 3 distinct subpopulations that possess gene signatures related to platelet generation, HSC niche interaction, and inflammatory responses. In situ immunostaining of mouse BM demonstrated that platelet generation and the HSC niche–related MKs were in close physical proximity to blood vessels and HSCs, respectively. Proplatelets, which could give rise to platelets under blood shear forces, were predominantly formed on a platelet generation subset. Remarkably, the inflammatory responses subpopulation, consisting generally of low-ploidy LSP1+ and CD53+ MKs (≤8N), represented ∼5% of total MKs in the BM. These MKs could specifically respond to pathogenic infections in mice. Rapid expansion of this population was accompanied by strong upregulation of a preexisting PU.1- and IRF-8–associated monocytic-like transcriptional program involved in pathogen recognition and clearance as well as antigen presentation. Consistently, isolated primary CD53+ cells were capable of engulfing and digesting bacteria and stimulating T cells in vitro. Together, our findings uncover new molecular, spatial, and functional heterogeneity within MKs in vivo and demonstrate the existence of a specialized MK subpopulation that may act as a new type of immune cell.

References

1.
Noetzli
LJ
,
French
SL
,
Machlus
KR
.
New insights into the differentiation of megakaryocytes from hematopoietic progenitors
.
Arterioscler Thromb Vasc Biol.
2019
;
39
(
7
):
1288
-
1300
.
2.
Wright
JH
.
The origin and nature of the blood plates
.
N Engl J Med.
1906
;
154
(
23
):
643
-
645
.
3.
Tavassoli
M
.
Megakaryocyte--platelet axis and the process of platelet formation and release
.
Blood.
1980
;
55
(
4
):
537
-
545
.
4.
Bruns
I
,
Lucas
D
,
Pinho
S
, et al
.
Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion
.
Nat Med.
2014
;
20
(
11
):
1315
-
1320
.
5.
Gong
Y
,
Zhao
M
,
Yang
W
, et al
.
Megakaryocyte-derived excessive transforming growth factor β1 inhibits proliferation of normal hematopoietic stem cells in acute myeloid leukemia
.
Exp Hematol.
2018
;
60
:
40
-
46.e42
.
6.
Heazlewood
SY
,
Neaves
RJ
,
Williams
B
,
Haylock
DN
,
Adams
TE
,
Nilsson
SK
.
Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation
.
Stem Cell Res (Amst).
2013
;
11
(
2
):
782
-
792
.
7.
Zhao
M
,
Perry
JM
,
Marshall
H
, et al
.
Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells
.
Nat Med.
2014
;
20
(
11
):
1321
-
1326
.
8.
Andonegui
G
,
Kerfoot
SM
,
McNagny
K
,
Ebbert
KV
,
Patel
KD
,
Kubes
P
.
Platelets express functional Toll-like receptor-4
.
Blood.
2005
;
106
(
7
):
2417
-
2423
.
9.
Beaulieu
LM
,
Lin
E
,
Morin
KM
,
Tanriverdi
K
,
Freedman
JE
.
Regulatory effects of TLR2 on megakaryocytic cell function
.
Blood.
2011
;
117
(
22
):
5963
-
5974
.
10.
Crist
SA
,
Elzey
BD
,
Ahmann
MT
,
Ratliff
TL
.
Early growth response-1 (EGR-1) and nuclear factor of activated T cells (NFAT) cooperate to mediate CD40L expression in megakaryocytes and platelets
.
J Biol Chem.
2013
;
288
(
47
):
33985
-
33996
.
11.
D’Atri
LP
,
Etulain
J
,
Rivadeneyra
L
, et al
.
Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage
.
J Thromb Haemost.
2015
;
13
(
5
):
839
-
850
.
12.
Lefrançais
E
,
Ortiz-Muñoz
G
,
Caudrillier
A
, et al
.
The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors
.
Nature.
2017
;
544
(
7648
):
105
-
109
.
13.
Maratheftis
CI
,
Andreakos
E
,
Moutsopoulos
HM
,
Voulgarelis
M
.
Toll-like receptor-4 is up-regulated in hematopoietic progenitor cells and contributes to increased apoptosis in myelodysplastic syndromes
.
Clin Cancer Res.
2007
;
13
(
4
):
1154
-
1160
.
14.
Rabellino
EM
,
Levene
RB
,
Nachman
RL
,
Leung
LL
.
Human megakaryocytes. III. Characterization in myeloproliferative disorders
.
Blood.
1984
;
63
(
3)
:
615
-
622
.
15.
Shiraki
R
,
Inoue
N
,
Kawasaki
S
, et al
.
Expression of Toll-like receptors on human platelets
.
Thromb Res.
2004
;
113
(
6
):
379
-
385
.
16.
Ward
JR
,
Bingle
L
,
Judge
HM
, et al
.
Agonists of toll-like receptor (TLR)2 and TLR4 are unable to modulate platelet activation by adenosine diphosphate and platelet activating factor
.
Thromb Haemost.
2005
;
94
(
4
):
831
-
838
.
17.
Campbell
RA
,
Schwertz
H
,
Hottz
ED
, et al
.
Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3
.
Blood.
2019
;
133
(
19
):
2013
-
2026
.
18.
Debili
N
,
Louache
F
,
Vainchenker
W
. Isolation and culture of megakaryocyte precursors. In:
Gibbins
JM
,
Mahaut-Smith
MP
, eds.
Platelets and Megakaryocytes: Additional Protocols and Perspectives.
Vol. 3
.
New York, NY
:
Springer
;
2004
:
293
-
308
.
19.
Prow
D
,
Vadhan-Raj
S
.
Thrombopoietin: biology and potential clinical applications
.
Oncology (Williston Park).
1998
;
12
(
11
):
1597
-
1604
.
20.
Li
L
,
Dong
J
,
Yan
L
, et al
.
Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions
.
Cell Stem Cell.
2017
;
20
(
6
):
858
-
873.e4
.
21.
Stuart
T
,
Butler
A
,
Hoffman
P
, et al
.
Comprehensive integration of single-cell data
.
Cell.
2019
;
177
(
7
):
1888
-
1902.e21
.
22.
Muntean
AG
,
Pang
L
,
Poncz
M
,
Dowdy
SF
,
Blobel
GA
,
Crispino
JD
.
Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization
.
Blood.
2007
;
109
(
12
):
5199
-
5207
.
23.
Fuhrken
PG
,
Apostolidis
PA
,
Lindsey
S
,
Miller
WM
,
Papoutsakis
ET
.
Tumor suppressor protein p53 regulates megakaryocytic polyploidization and apoptosis
.
J Biol Chem.
2008
;
283
(
23
):
15589
-
15600
.
24.
Almers
W
.
Exocytosis
.
Annu Rev Physiol.
1990
;
52
(
1
):
607
-
624
.
25.
Fleming
HE
,
Janzen
V
,
Lo Celso
C
, et al
.
Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo
.
Cell Stem Cell.
2008
;
2
(
3
):
274
-
283
.
26.
Reya
T
,
Duncan
AW
,
Ailles
L
, et al
.
A role for Wnt signalling in self-renewal of haematopoietic stem cells
.
Nature.
2003
;
423
(
6938
):
409
-
414
.
27.
Friedman
AD
.
Transcriptional control of granulocyte and monocyte development
.
Oncogene.
2007
;
26
(
47
):
6816
-
6828
.
28.
Chen
Y
,
Boukour
S
,
Milloud
R
, et al
.
The abnormal proplatelet formation in MYH9-related macrothrombocytopenia results from an increased actomyosin contractility and is rescued by myosin IIA inhibition
.
J Thromb Haemost.
2013
;
11
(
12
):
2163
-
2175
.
29.
Eckly
A
,
Strassel
C
,
Freund
M
, et al
.
Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation
.
Blood.
2009
;
113
(
14
):
3182
-
3189
.
30.
Jennings
LK
.
Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis
.
Thromb Haemost.
2009
;
102
(
2
):
248
-
257
.
31.
Kunishima
S
,
Nishimura
S
,
Suzuki
H
,
Imaizumi
M
,
Saito
H
.
TUBB1 mutation disrupting microtubule assembly impairs proplatelet formation and results in congenital macrothrombocytopenia
.
Eur J Haematol.
2014
;
92
(
4
):
276
-
282
.
32.
Yun
S-H
,
Sim
E-H
,
Goh
R-Y
,
Park
J-I
,
Han
J-Y
.
Platelet activation: the mechanisms and potential biomarkers [published online ahead of print 15 June 2016]
.
Biomed Res Int.
33.
Doré
LC
,
Crispino
JD
.
Transcription factor networks in erythroid cell and megakaryocyte development
.
Blood.
2011
;
118
(
2
):
231
-
239
.
34.
Shivdasani
RA
,
Rosenblatt
MF
,
Zucker-Franklin
D
, et al
.
Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development
.
Cell.
1995
;
81
(
5
):
695
-
704
.
35.
Vo
KK
,
Jarocha
DJ
,
Lyde
RB
, et al
.
FLI1 level during megakaryopoiesis affects thrombopoiesis and platelet biology
.
Blood.
2017
;
129
(
26
):
3486
-
3494
.
36.
Penington
DG
,
Streatfield
K
,
Roxburgh
AE
.
Megakaryocytes and the heterogeneity of circulating platelets
.
Br J Haematol.
1976
;
34
(
4
):
639
-
653
.
37.
Dunlock
VE
.
Tetraspanin CD53: an overlooked regulator of immune cell function
.
Med Microbiol Immunol.
2020
;
209
(
4
):
545
-
552
.
38.
Hegyi
E
,
Nakazawa
M
,
Debili
N
, et al
.
Developmental changes in human megakaryocyte ploidy
.
Exp Hematol.
1991
;
19
(
2
):
87
-
94
.
39.
Junt
T
,
Schulze
H
,
Chen
Z
.
Dynamic visualization of thrombopoiesis within bone marrow
.
Science.
2007
;
317
(
5845
):
1767
-
1770
.
40.
Stegner
D
,
vanEeuwijk
JMM
,
Angay
O
, et al
.
Thrombopoiesis is spatially regulated by the bone marrow vasculature
.
Nat Commun.
2017
;
8
(
1
):
127
.
41.
Jiang
L
,
Han
X
,
Wang
J
, et al
.
SHP-1 regulates hematopoietic stem cell quiescence by coordinating TGF-β signaling
.
J Exp Med.
2018
;
215
(
5
):
1337
-
1347
.
42.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell.
2005
;
121
(
7
):
1109
-
1121
.
43.
Yeung
AK
,
Villacorta-Martin
C
,
Hon
S
,
Rock
JR
,
Murphy
GJ
.
Lung megakaryocytes display distinct transcriptional and phenotypic properties
.
Blood Adv.
2020
;
4
(
24
):
6204
-
6217
.
44.
Wang
H
,
He
J
,
Xu
C
, et al
.
Decoding human megakaryocyte development
.
Cell Stem Cell.
2021
;
28
(
3
):
535
-
549.e8
.
45.
Maekawa
T
,
Kato
S
,
Kawamura
T
, et al
.
Increased SLAMF7high monocytes in myelofibrosis patients harboring JAK2 V617F provide a therapeutic target of elotuzumab
.
Blood.
2019
;
134
(
10
):
814
-
825
.
46.
Niswander
LM
,
Fegan
KH
,
Kingsley
PD
,
McGrath
KE
,
Palis
J
.
SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury
.
Blood.
2014
;
124
(
2
):
277
-
286
.
47.
Bhatlekar
S
,
Manne
BK
,
Basak
I
, et al
.
miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin
.
Blood.
2020
;
136
(
15
):
1760
-
1772
.
48.
Morrell
CN
,
Aggrey
AA
,
Chapman
LM
,
Modjeski
KL
.
Emerging roles for platelets as immune and inflammatory cells
.
Blood.
2014
;
123
(
18
):
2759
-
2767
.
49.
Finkielsztein
A
,
Schlinker
AC
,
Zhang
L
,
Miller
WM
,
Datta
SK
.
Human megakaryocyte progenitors derived from hematopoietic stem cells of normal individuals are MHC class II-expressing professional APC that enhance Th17 and Th1/Th17 responses
.
Immunol Lett.
2015
;
163
(
1
):
84
-
95
.
50.
Pariser
DN
,
Hilt
ZT
,
Ture
SK
, et al
.
Lung megakaryocytes are immune modulatory cells
.
J Clin Invest.
2021
;
131
(
1
):
e137377
.
51.
Gao
X
,
Xu
C
,
Asada
N
,
Frenette
PS
.
The hematopoietic stem cell niche: from embryo to adult
.
Development.
2018
;
145
(
2
):
dev139691
.
You do not currently have access to this content.

Sign in via your Institution

Sign In