Key Points

  • Placental-derived HTRA1 cleaves A1AT, resulting in the generation of neonatal NIPs.

  • Neonatal neutrophils from HTRA1−/− mice become NET competent earlier after birth compared with HTRA1+/+ littermate controls.

Abstract

Neutrophil extracellular traps (NETs) are important components of innate immunity. Neonatal neutrophils (polymorphonuclear leukocytes [PMNs]) fail to form NETs due to circulating NET-inhibitory peptides (NIPs), cleavage fragments of α1-antitrypsin (A1AT). How fetal and neonatal blood NIPs are generated remains unknown, however. The placenta expresses high-temperature requirement serine protease A1 (HTRA1) during fetal development, which can cleave A1AT. We hypothesized that placentally expressed HTRA1 regulates the formation of NIPs and that NET competency changed in PMNs isolated from neonatal HTRA1 knockout mice (HTRA1−/−). We found that umbilical cord blood plasma has elevated HTRA1 levels compared with adult plasma and that recombinant and placenta-eluted HTRA1 cleaves A1AT to generate an A1AT cleavage fragment (A1ATM383S-CF) of molecular weight similar to previously identified NIPs that block NET formation by adult neutrophils. We showed that neonatal mouse pup plasma contains A1AT fragments that inhibit NET formation by PMNs isolated from adult mice, indicating that NIP generation during gestation is conserved across species. Lipopolysaccharide-stimulated PMNs isolated from HTRA1+/+ littermate control pups exhibit delayed NET formation after birth. However, plasma from HTRA1−/− pups had no detectable NIPs, and PMNs from HTRA1−/− pups became NET competent earlier after birth compared with HTRA1+/+ littermate controls. Finally, in the cecal slurry model of neonatal sepsis, A1ATM383S-CF improved survival in C57BL/6 pups by preventing pathogenic NET formation. Our data indicate that placentally expressed HTRA1 is a serine protease that cleaves A1AT in utero to generate NIPs that regulate NET formation by human and mouse PMNs.

References

1.
Racicot
K
,
Kwon
JY
,
Aldo
P
,
Silasi
M
,
Mor
G.
Understanding the complexity of the immune system during pregnancy
.
Am J Reprod Immunol.
2014
;
72
(
2
):
107
-
116
.
2.
Liu
S
,
Diao
L
,
Huang
C
,
Li
Y
,
Zeng
Y
,
Kwak-Kim
JYH.
The role of decidual immune cells on human pregnancy
.
J Reprod Immunol.
2017
;
124
:
44
-
53
.
3.
Ferreira
LMR
,
Meissner
TB
,
Tilburgs
T
,
Strominger
JL.
HLA-G: at the interface of maternal-fetal tolerance
.
Trends Immunol.
2017
;
38
(
4
):
272
-
286
.
4.
Kim
CJ
,
Romero
R
,
Chaemsaithong
P
,
Chaiyasit
N
,
Yoon
BH
,
Kim
YM.
Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance
.
Am J Obstet Gynecol.
2015
;
213
(
suppl 4
):
S29
-
S52
.
5.
Kallapur
SG
,
Presicce
P
,
Rueda
CM
,
Jobe
AH
,
Chougnet
CA.
Fetal immune response to chorioamnionitis
.
Semin Reprod Med.
2014
;
32
(
1
):
56
-
67
.
6.
Yost
CC
,
Schwertz
H
,
Cody
MJ
, et al
.
Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation
.
J Clin Invest.
2016
;
126
(
10
):
3783
-
3798
.
7.
Papayannopoulos
V.
Neutrophil extracellular traps in immunity and disease
.
Nat Rev Immunol.
2018
;
18
(
2
):
134
-
147
.
8.
Clark
SR
,
Ma
AC
,
Tavener
SA
, et al
.
Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood
.
Nat Med.
2007
;
13
(
4
):
463
-
469
.
9.
Shen
XF
,
Cao
K
,
Jiang
JP
,
Guan
WX
,
Du
JF.
Neutrophil dysregulation during sepsis: an overview and update
.
J Cell Mol Med.
2017
;
21
(
9
):
1687
-
1697
.
10.
Caudrillier
A
,
Kessenbrock
K
,
Gilliss
BM
, et al
.
Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury
.
J Clin Invest.
2012
;
122
(
7
):
2661
-
2671
.
11.
Lefrançais
E
,
Mallavia
B
,
Zhuo
H
,
Calfee
CS
,
Looney
MR.
Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury
.
JCI Insight.
2018
;
3
(
3
):
98178
.
12.
Carmona-Rivera
C
,
Zhao
W
,
Yalavarthi
S
,
Kaplan
MJ.
Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2
.
Ann Rheum Dis.
2015
;
74
(
7
):
1417
-
1424
.
13.
Zuo
Y
,
Yalavarthi
S
,
Shi
H
, et al
.
Neutrophil extracellular traps in COVID-19
.
JCI Insight.
2020
;
5
(
11
):
138999
.
14.
Middleton
EA
,
He
XY
,
Denorme
F
, et al
.
Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome
.
Blood.
2020
;
136
(
10
):
1169
-
1179
.
15.
De Luca
A
,
De Falco
M
,
Severino
A
, et al
.
Distribution of the serine protease HtrA1 in normal human tissues
.
J Histochem Cytochem.
2003
;
51
(
10
):
1279
-
1284
.
16.
Frochaux
V
,
Hildebrand
D
,
Talke
A
,
Linscheid
MW
,
Schlüter
H.
Alpha-1-antitrypsin: a novel human high temperature requirement protease A1 (HTRA1) substrate in human placental tissue
.
PLoS One.
2014
;
9
(
10
):
e109483
.
17.
Zhang
L
,
Lim
SL
,
Du
H
, et al
.
High temperature requirement factor A1 (HTRA1) gene regulates angiogenesis through transforming growth factor-β family member growth differentiation factor 6
.
J Biol Chem.
2012
;
287
(
2
):
1520
-
1526
.
18.
Jones
A
,
Kumar
S
,
Zhang
N
, et al
.
Increased expression of multifunctional serine protease, HTRA1, in retinal pigment epithelium induces polypoidal choroidal vasculopathy in mice
.
Proc Natl Acad Sci U S A.
2011
;
108
(
35
):
14578
-
14583
.
19.
Wynn
JL
,
Scumpia
PO
,
Delano
MJ
, et al
.
Increased mortality and altered immunity in neonatal sepsis produced by generalized peritonitis
.
Shock.
2007
;
28
(
6
):
675
-
683
.
20.
Starr
ME
,
Steele
AM
,
Saito
M
,
Hacker
BJ
,
Evers
BM
,
Saito
H.
A new cecal slurry preparation protocol with improved long-term reproducibility for animal models of sepsis
.
PLoS One.
2014
;
9
(
12
):
e115705
.
21.
Kolaczkowska
E
,
Kubes
P.
Neutrophil recruitment and function in health and inflammation
.
Nat Rev Immunol.
2013
;
13
(
3
):
159
-
175
.
22.
Lawrence
SM
,
Corriden
R
,
Nizet
V.
Age-appropriate functions and dysfunctions of the neonatal neutrophil
.
Front Pediatr.
2017
;
5
:
23
.
23.
Yost
CC
,
Cody
MJ
,
Harris
ES
, et al
.
Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates
.
Blood.
2009
;
113
(
25
):
6419
-
6427
.
24.
Lipinska
B
,
Fayet
O
,
Baird
L
,
Georgopoulos
C.
Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures
.
J Bacteriol.
1989
;
171
(
3
):
1574
-
1584
.
25.
Strauch
KL
,
Beckwith
J.
An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins
.
Proc Natl Acad Sci U S A.
1988
;
85
(
5
):
1576
-
1580
.
26.
Tsuchiya
A
,
Yano
M
,
Tocharus
J
, et al
.
Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis
.
Bone.
2005
;
37
(
3
):
323
-
336
.
27.
Horie-Inoue
K
,
Inoue
S.
Genomic aspects of age-related macular degeneration
.
Biochem Biophys Res Commun.
2014
;
452
(
2
):
263
-
275
.
28.
Uemura
M
,
Nozaki
H
,
Kato
T
, et al
.
HTRA1-related cerebral small vessel disease: a review of the literature
.
Front Neurol.
2020
;
11
:
545
.
29.
Teoh
SS
,
Zhao
M
,
Wang
Y
,
Chen
Q
,
Nie
G.
Serum HtrA1 is differentially regulated between early-onset and late-onset preeclampsia
.
Placenta.
2015
;
36
(
9
):
990
-
995
.
30.
Klose
R
,
Prinz
A
,
Tetzlaff
F
, et al
.
Loss of the serine protease HTRA1 impairs smooth muscle cells maturation
.
Sci Rep.
2019
;
9
(
1
):
18224
.
31.
Chen
PH
,
Tang
T
,
Liu
C
, et al
.
High-temperature requirement A1 protease as a rate-limiting factor in the development of osteoarthritis
.
Am J Pathol.
2019
;
189
(
7
):
1423
-
1434
.
32.
Hasan
MZ
,
Ikawati
M
,
Tocharus
J
,
Kawaichi
M
,
Oka
C.
Abnormal development of placenta in HtrA1-deficient mice
.
Dev Biol.
2015
;
397
(
1
):
89
-
102
.
33.
Marzioni
D
,
Quaranta
A
,
Lorenzi
T
, et al
.
Expression pattern alterations of the serine protease HtrA1 in normal human placental tissues and in gestational trophoblastic diseases
.
Histol Histopathol.
2009
;
24
(
10
):
1213
-
1222
.
34.
Gupta
AK
,
Hasler
P
,
Holzgreve
W
,
Gebhardt
S
,
Hahn
S.
Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia
.
Hum Immunol.
2005
;
66
(
11
):
1146
-
1154
.
35.
Altobelli
E
,
Latella
G
,
Morroni
M
, et al
.
Low HtrA1 expression in patients with long-standing ulcerative colitis and colorectal cancer
.
Oncol Rep.
2017
;
38
(
1
):
418
-
426
.
36.
Lorenzi
M
,
Lorenzi
T
,
Marzetti
E
, et al
.
Association of frailty with the serine protease HtrA1 in older adults
.
Exp Gerontol.
2016
;
81
:
8
-
12
.
37.
Niemann
MA
,
Baggott
JE
,
Miller
EJ.
Inhibition of human serine proteases by SPAAT, the C-terminal 44-residue peptide from alpha1-antitrypsin
.
Biochim Biophys Acta.
1997
;
1340
(
1
):
123
-
130
.
38.
Shane
AL
,
Sánchez
PJ
,
Stoll
BJ.
Neonatal sepsis
.
Lancet.
2017
;
390
(
10104
):
1770
-
1780
.
39.
Ye
Q
,
Du
LZ
,
Shao
WX
,
Shang
SQ.
Utility of cytokines to predict neonatal sepsis
.
Pediatr Res.
2017
;
81
(
4
):
616
-
621
.
You do not currently have access to this content.

Sign in via your Institution

Sign In