Key Points

  • As a result of low glutathione and glutathione peroxidase 4 levels and high 5-lipoxygenase expression, DMF induces ferroptosis in GCB DLBCL.

  • In ABC DLBCL, DMF induces succination of kinases IKK2 and JAK1, thus inhibiting NF-κB and JAK/STAT survival signaling.

Abstract

Despite the development of novel targeted drugs, the molecular heterogeneity of diffuse large B-cell lymphoma (DLBCL) still poses a substantial therapeutic challenge. DLBCL can be classified into at least 2 major subtypes (germinal center B cell [GCB]-like and activated B cell [ABC]-like DLBCL), each characterized by specific gene expression profiles and mutation patterns. Here we demonstrate a broad antitumor effect of dimethyl fumarate (DMF) on both DLBCL subtypes, which is mediated by the induction of ferroptosis, a form of cell death driven by the peroxidation of phospholipids. As a result of the high expression of arachidonate 5-lipoxygenase in concert with low glutathione and glutathione peroxidase 4 levels, DMF induces lipid peroxidation and thus ferroptosis, particularly in GCB DLBCL. In ABC DLBCL cells, which are addicted to NF-κB and STAT3 survival signaling, DMF treatment efficiently inhibits the activity of the IKK complex and Janus kinases. Interestingly, the BCL-2–specific BH3 mimetic ABT-199 and an inhibitor of ferroptosis suppressor protein 1 synergize with DMF in inducing cell death in DLBCL. Collectively, our findings identify the clinically approved drug DMF as a promising novel therapeutic option in the treatment of both GCB and ABC DLBCLs.

REFERENCES

1.
Nogai
H
,
Dörken
B
,
Lenz
G.
Pathogenesis of non-Hodgkin’s lymphoma
.
J Clin Oncol.
2011
;
29
(
14
):
1803
-
1811
.
2.
Swerdlow
SH
,
Campo
E
,
Pileri
SA
, et al
.
The 2016 revision of the World Health Organization classification of lymphoid neoplasms
.
Blood.
2016
;
127
(
20
):
2375
-
2390
.
3.
Coiffier
B
,
Lepage
E
,
Briere
J
, et al
.
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma
.
N Engl J Med.
2002
;
346
(
4
):
235
-
242
.
4.
Pfreundschuh
M
,
Trümper
L
,
Osterborg
A
, et al
;
MabThera International Trial Group. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group
.
Lancet Oncol.
2006
;
7
(
5
):
379
-
391
.
5.
Gisselbrecht
C
,
Glass
B
,
Mounier
N
, et al
.
Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era
.
J Clin Oncol.
2010
;
28
(
27
):
4184
-
4190
.
6.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature.
2000
;
403
(
6769
):
503
-
511
.
7.
Lenz
G
,
Wright
G
,
Dave
SS
, et al
;
Lymphoma/Leukemia Molecular Profiling Project. Stromal gene signatures in large-B-cell lymphomas
.
N Engl J Med.
2008
;
359
(
22
):
2313
-
2323
.
8.
Rosenwald
A
,
Wright
G
,
Chan
WC
, et al
;
Lymphoma/Leukemia Molecular Profiling Project. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
.
N Engl J Med.
2002
;
346
(
25
):
1937
-
1947
.
9.
Wright
G
,
Tan
B
,
Rosenwald
A
,
Hurt
EH
,
Wiestner
A
,
Staudt
LM.
A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma
.
Proc Natl Acad Sci USA.
2003
;
100
(
17
):
9991
-
9996
.
10.
Grondona
P
,
Bucher
P
,
Schulze-Osthoff
K
,
Hailfinger
S
,
Schmitt
A.
NF-κB activation in lymphoid malignancies: genetics, signaling, and targeted therapy
.
Biomedicines.
2018
;
6
(
2
):
38
.
11.
Compagno
M
,
Lim
WK
,
Grunn
A
, et al
.
Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma
.
Nature.
2009
;
459
(
7247
):
717
-
721
.
12.
Davis
RE
,
Ngo
VN
,
Lenz
G
, et al
.
Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma
.
Nature.
2010
;
463
(
7277
):
88
-
92
.
13.
Lenz
G
,
Staudt
LM.
Aggressive lymphomas
.
N Engl J Med.
2010
;
362
(
15
):
1417
-
1429
.
14.
Lenz
G
,
Davis
RE
,
Ngo
VN
, et al
.
Oncogenic CARD11 mutations in human diffuse large B cell lymphoma
.
Science.
2008
;
319
(
5870
):
1676
-
1679
.
15.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med.
2018
;
378
(
15
):
1396
-
1407
.
16.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes [published corrections appear in Nat Med. 2018;24(8): 1290–1291 and Nat Med. 2018;24(8):1292]
.
Nat Med.
2018
;
24
(
5
):
679
-
690
.
17.
Lam
LT
,
Wright
G
,
Davis
RE
, et al
.
Cooperative signaling through the signal transducer and activator of transcription 3 and nuclear factor-kappaB pathways in subtypes of diffuse large B-cell lymphoma
.
Blood.
2008
;
111
(
7
):
3701
-
3713
.
18.
Salas
A
,
Hernandez-Rocha
C
,
Duijvestein
M
, et al
.
JAK-STAT pathway targeting for the treatment of inflammatory bowel disease
.
Nat Rev Gastroenterol Hepatol.
2020
;
17
(
6
):
323
-
337
.
19.
Li
J
,
Cao
F
,
Yin
HL
, et al
.
Ferroptosis: past, present and future
.
Cell Death Dis.
2020
;
11
(
2
):
88
.
20.
Friedmann Angeli
JP
,
Krysko
DV
,
Conrad
M.
Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion
.
Nat Rev Cancer.
2019
;
19
(
7
):
405
-
414
.
21.
Dixon
SJ
,
Lemberg
KM
,
Lamprecht
MR
, et al
.
Ferroptosis: an iron-dependent form of nonapoptotic cell death
.
Cell.
2012
;
149
(
5
):
1060
-
1072
.
22.
Yang
WS
,
Kim
KJ
,
Gaschler
MM
,
Patel
M,
Shchepinov
MS
,
Stockwell
BR.
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
.
Proc Natl Acad Sci USA.
2016
;
113
(
34
):
E4966
-
E4975
.
23.
Kagan VE
,
Mao
G
,
Qu
F
, et al
.
Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis
.
Nat Chem Biol.
2017
;
13
(
1
):
81
-
90
.
24.
Haeggström
JZ
,
Funk
CD.
Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease
.
Chem Rev.
2011
;
111
(
10
):
5866
-
5898
.
25.
Friedmann Angeli
JP
,
Conrad
M.
Lipoxygenases-killers against their will?
ACS Cent Sci.
2018
;
4
(
3
):
312
-
314
.
26.
Shah
R
,
Shchepinov
MS
,
Pratt
DA.
Resolving the role of lipoxygenases in the initiation and execution of ferroptosis
.
ACS Cent Sci.
2018
;
4
(
3
):
387
-
396
.
27.
Friedmann Angeli
JP
,
Schneider
M
,
Proneth
B
, et al
.
Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice
.
Nat Cell Biol.
2014
;
16
(
12
):
1180
-
1191
.
28.
Yang
WS
,
SriRamaratnam
R
,
Welsch
ME
, et al
.
Regulation of ferroptotic cancer cell death by GPX4
.
Cell.
2014
;
156
(
1-2
):
317
-
331
.
29.
Linker
RA
,
Lee
DH
,
Ryan
S
, et al
.
Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway
.
Brain.
2011
;
134
(Pt 3):
678
-
692
.
30.
Brück
J
,
Dringen
R
,
Amasuno
A
,
Pau-Charles
I
,
Ghoreschi
K.
A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis
.
Exp Dermatol.
2018
;
27
(
6
):
611
-
624
.
31.
Brennan
MS
,
Matos
MF
,
Li
B
, et al
.
Dimethyl fumarate and monoethyl fumarate exhibit differential effects on KEAP1, NRF2 activation, and glutathione depletion in vitro
.
PLoS One.
2015
;
10
(
3
):e0120254.
32.
Blewett
MM
,
Xie
J
,
Zaro
BW
, et al
.
Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells
.
Sci Signal.
2016
;
9
(
445
):rs10.
33.
Zhao
G
,
Liu
Y
,
Fang
J
,
Chen
Y
,
Li
H
,
Gao
K.
Dimethyl fumarate inhibits the expression and function of hypoxia-inducible factor-1α (HIF-1α)
.
Biochem Biophys Res Commun.
2014
;
448
(
3
):
303
-
307
.
34.
Gillard GO
,
Collette
B
,
Anderson
J
, et al
.
DMF, but not other fumarates, inhibits NF-κB activity in vitro in an Nrf2-independent manner
.
J Neuroimmunol.
2015
;
283
:
74
-
85
.
35.
Vandermeeren
M
,
Janssens
S
,
Wouters
H
, et al
.
Dimethylfumarate is an inhibitor of cytokine-induced nuclear translocation of NF-kappa B1, but not RelA in normal human dermal fibroblast cells
.
J Invest Dermatol.
2001
;
116
(
1
):
124
-
130
.
36.
Kornberg
MD
,
Bhargava
P
,
Kim
PM
, et al
.
Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity
.
Science.
2018
;
360
(
6387
):
449
-
453
.
37.
Hanson
J
,
Gille
A
,
Offermanns
S.
Role of HCA2 (GPR109A) in nicotinic acid and fumaric acid ester-induced effects on the skin
.
Pharmacol Ther.
2012
;
136
(
1
):
1
-
7
.
38.
Hanson
J
,
Gille
A
,
Zwykiel
S
, et al
.
Nicotinic acid- and monomethyl fumarate-induced flushing involves GPR109A expressed by keratinocytes and COX-2-dependent prostanoid formation in mice
.
J Clin Invest.
2010
;
120
(
8
):
2910
-
2919
.
39.
Chen
H
,
Assmann
JC
,
Krenz
A
, et al
.
Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE
.
J Clin Invest.
2014
;
124
(
5
):
2188
-
2192
.
40.
Tang
H
,
Lu
JY
,
Zheng
X
,
Yang
Y
,
Reagan
JD.
The psoriasis drug monomethylfumarate is a potent nicotinic acid receptor agonist
.
Biochem Biophys Res Commun.
2008
;
375
(
4
):
562
-
565
.
41.
Davis
RE
,
Brown
KD
,
Siebenlist
U
,
Staudt
LM.
Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells
.
J Exp Med.
2001
;
194
(
12
):
1861
-
1874
.
42.
Lingappan
K.
NF-κB in oxidative stress
.
Curr Opin Toxicol.
2018
;
7
:
81
-
86
.
43.
Luo
M
,
Jones
SM
,
Peters-Golden
M
,
Brock
TG.
Nuclear localization of 5-lipoxygenase as a determinant of leukotriene B4 synthetic capacity
.
Proc Natl Acad Sci USA.
2003
;
100
(
21
):
12165
-
12170
.
44.
Mandal AK
,
Jones
PB
,
Bair
AM
, et al
.
The nuclear membrane organization of leukotriene synthesis
.
Proc Natl Acad Sci USA.
2008
;
105
(
51
):
20434
-
20439
.
45.
Rådmark
O
,
Samuelsson
B.
5-Lipoxygenase: mechanisms of regulation
.
J Lipid Res.
2009
;
50
(
suppl
):
S40
-S45.
46.
Thome
M
,
Charton
JE
,
Pelzer
C
,
Hailfinger
S.
Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1
.
Cold Spring Harb Perspect Biol.
2010
;
2
(
9
):
a003004
.
47.
Jaramillo
MC
,
Zhang
DD.
The emerging role of the Nrf2-Keap1 signaling pathway in cancer
.
Genes Dev.
2013
;
27
(
20
):
2179
-
2191
.
48.
Zandi
E
,
Rothwarf
DM
,
Delhase
M
,
Hayakawa
M
,
Karin
M.
The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation
.
Cell.
1997
;
91
(
2
):
243
-
252
.
49.
Rahighi
S
,
Ikeda
F
,
Kawasaki
M
, et al
.
Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation
.
Cell.
2009
;
136
(
6
):
1098
-
1109
.
50.
Byun
MS
,
Choi
J
,
Jue
DM.
Cysteine-179 of IkappaB kinase beta plays a critical role in enzyme activation by promoting phosphorylation of activation loop serines
.
Exp Mol Med.
2006
;
38
(
5
):
546
-
552
.
51.
Villarino
AV
,
Kanno
Y
,
O’Shea
JJ.
Mechanisms and consequences of Jak-STAT signaling in the immune system
.
Nat Immunol.
2017
;
18
(
4
):
374
-
384
.
52.
Doll
S
,
Freitas
FP
,
Shah
R
, et al
.
FSP1 is a glutathione-independent ferroptosis suppressor
.
Nature.
2019
;
575
(
7784
):
693
-
698
.
53.
Methner
A
,
Zipp
F.
Multiple sclerosis in 2012: Novel therapeutic options and drug targets in MS [published correction appears in
Nat Rev Neurol.
2013
;
9
(
5):240
]. Nat Rev Neurol. 2013;9(
2):72
-
73
.
54.
Zheng
L
,
Cardaci
S
,
Jerby
L
, et al
.
Fumarate induces redox-dependent senescence by modifying glutathione metabolism
.
Nat Commun.
2015
;
6
:
6001
.
55.
Feng
H
,
Stockwell
BR.
Unsolved mysteries: How does lipid peroxidation cause ferroptosis?
PLoS Biol.
2018
;
16
(
5
):
e2006203
.
56.
Ufer
C
,
Borchert
A
,
Kuhn
H.
Functional characterization of cis- and trans-regulatory elements involved in expression of phospholipid hydroperoxide glutathione peroxidase
.
Nucleic Acids Res.
2003
;
31
(
15
):
4293
-
4303
.
57.
Alim
I
,
Caulfield
JT
,
Chen
Y
, et al
.
Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke
.
Cell.
2019
;
177
(
5
):
1262
-
1279
.e25.
58.
Bellezza
I
,
Tucci
A
,
Galli
F
, et al
.
Inhibition of NF-κB nuclear translocation via HO-1 activation underlies α-tocopheryl succinate toxicity
.
J Nutr Biochem.
2012
;
23
(
12
):
1583
-
1591
.
59.
Kastrati
I
,
Siklos
MI
,
Calderon-Gierszal
EL
, et al
.
Dimethyl fumarate inhibits the nuclear factor κB pathway in breast cancer cells by covalent modification of p65 protein
.
J Biol Chem.
2016
;
291
(
7
):
3639
-
3647
.
60.
McGuire VA
,
Ruiz-Zorrilla
Diez
T
,
Emmerich
CH
, et al
.
Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation
.
Sci Rep.
2016
;
6
:
31159
.
61.
Nicolay
JP
,
Müller-Decker
K
,
Schroeder
A
, et al
.
Dimethyl fumarate restores apoptosis sensitivity and inhibits tumor growth and metastasis in CTCL by targeting NF-κB
.
Blood.
2016
;
128
(
6
):
805
-
815
.
62.
Green
TM
,
Young
KH
,
Visco
C
, et al
.
Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone
.
J Clin Oncol.
2012
;
30
(
28
):
3460
-
3467
.
63.
Hu
S
,
Xu-Monette
ZY
,
Tzankov
A
, et al
.
MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program
.
Blood.
2013
;
121
(
20
):
4021
-
4031, quiz 4250
.
64.
Johnson
NA
,
Slack
GW
,
Savage
KJ
, et al
.
Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone
.
J Clin Oncol.
2012
;
30
(
28
):
3452
-
3459
.
65.
Tsuyama
N
,
Sakata
S
,
Baba
S
, et al
.
BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation
.
Blood.
2017
;
130
(
4
):
489
-
500
.
66.
Froehlich
TC
,
Müller-Decker
K
,
Braun
JD
, et al
.
Combined inhibition of Bcl-2 and NFκB synergistically induces cell death in cutaneous T-cell lymphoma
.
Blood.
2019
;
134
(
5
):
445
-
455
.
67.
Bersuker
K
,
Hendricks
JM
,
Li
Z
, et al
.
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis
.
Nature.
2019
;
575
(
7784
):
688
-
692
.
You do not currently have access to this content.

Sign in via your Institution

Sign In