Key Points

  • Combined biosensors, time-lapse imaging, and microfluidics enable signaling dynamics quantification in live HSPCs.

  • Human HSPC ERK signaling dynamics are heterogeneous and specific for cytokines and their combinations in a cell-type–dependent manner.

Abstract

How hematopoietic stem cells (HSCs) integrate signals from their environment to make fate decisions remains incompletely understood. Current knowledge is based on either averages of heterogeneous populations or snapshot analyses, both missing important information about the dynamics of intracellular signaling activity. By combining fluorescent biosensors with time-lapse imaging and microfluidics, we measured the activity of the extracellular-signal–regulated kinase (ERK) pathway over time (ie, dynamics) in live single human umbilical cord blood HSCs and multipotent progenitor cells (MPPs). In single cells, ERK signaling dynamics were highly heterogeneous and depended on the cytokines, their combinations, and cell types. ERK signaling was activated by stem cell factor (SCF) and FMS-like tyrosine kinase 3 ligand in HSCs but SCF, interleukin 3, and granulocyte colony-stimulating factor in MPPs. Different cytokines and their combinations led to distinct ERK signaling dynamics frequencies, and ERK dynamics in HSCs were more transient than those in MPPs. A combination of 5 cytokines recently shown to maintain HSCs in long-term culture, had a more-than-additive effect in eliciting sustained ERK dynamics in HSCs. ERK signaling dynamics also predicted future cell fates. For example, CD45RA expression increased more in HSC daughters with intermediate than with transient or sustained ERK signaling. We demonstrate heterogeneous cytokine- and cell-type–specific ERK signaling dynamics, illustrating their relevance in regulating hematopoietic stem and progenitor (HSPC) cell fates.

REFERENCES

1.
Pietras
EM
,
Mirantes-Barbeito
C
,
Fong
S
, et al
.
Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal
.
Nat Cell Biol.
2016
;
18
(
6
):
607
-
618
.
2.
Etzrodt
M
,
Ahmed
N
,
Hoppe
PS
, et al
.
Inflammatory signals directly instruct PU.1 in HSCs via TNF
.
Blood.
2019
;
133
(
8
):
816
-
819
.
3.
Wang
W
,
Fujii
H
,
Kim
HJ
, et al
.
Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell-mediated TNFα signaling
.
Sci Transl Med.
2017
;
9
(
421
):
eaag3214
.
4.
Baldridge
MT
,
King
KY
,
Boles
NC
,
Weksberg
DC
,
Goodell
MA.
Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection
.
Nature.
2010
;
465
(
7299
):
793
-
797
.
5.
Essers
MAG
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNalpha activates dormant haematopoietic stem cells in vivo
.
Nature.
2009
;
458
(
7240
):
904
-
908
.
6.
Rieger
MA
,
Hoppe
PS
,
Smejkal
BM
,
Eitelhuber
AC
,
Schroeder
T.
Hematopoietic cytokines can instruct lineage choice
.
Science
2009
;
325
(
5937
):
217
-
218
.
7.
Endele
M
,
Loeffler
D
,
Kokkaliaris
KD
, et al
.
CSF-1-induced Src signaling can instruct monocytic lineage choice
.
Blood.
2017
;
129
(
12
):
1691
-
1701
.
8.
Yilmaz
ÖH
,
Valdez
R
,
Theisen
BK
, et al
.
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
.
Nature.
2006
;
441
(
7092
):
475
-
482
.
9.
Guzman
ML
,
Neering
SJ
,
Upchurch
D
, et al
.
Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells
.
Blood.
2001
;
98
(
8
):
2301
-
2307
.
10.
Kharas
MG
,
Okabe
R
,
Ganis
JJ
, et al
.
Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
.
Blood.
2010
;
115
(
7
):
1406
-
1415
.
11.
Chung
E
,
Kondo
M.
Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development
.
Immunol Res.
2011
;
49
(
1-3
):
248
-
268
.
12.
Wilkinson
AC
,
Igarashi
KJ
,
Nakauchi
H.
Haematopoietic stem cell self-renewal in vivo and ex vivo
.
Nat Rev Genet.
2020
;
21
(
9
):
541
-
554
.
13.
Coutu
DL
,
Kokkaliaris
KD
,
Kunz
L
,
Schroeder
T.
Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules
.
Nat Biotechnol.
2017
;
35
(
12
):
1202
-
1210
.
14.
Kunz
L
,
Schroeder
T.
A 3D tissue-wide digital imaging pipeline for quantitation of secreted molecules shows absence of CXCL12 gradients in bone marrow
.
Cell Stem Cell.
2019
;
25
(
6
):
846
-
854.e4
.
15.
Coutu
DL
,
Kokkaliaris
KD
,
Kunz
L
,
Schroeder
T.
Multicolor quantitative confocal imaging cytometry
.
Nat Methods.
2018
;
15
(
1
):
39
-
46
.
16.
Knapp
DJHF
,
Hammond
CA
,
Aghaeepour
N
, et al
.
Distinct signaling programs control human hematopoietic stem cell survival and proliferation
.
Blood.
2017
;
129
(
3
):
307
-
318
.
17.
Wang
W
,
Akbarian
V
,
Audet
J.
Biochemical measurements on single erythroid progenitor cells shed light on the combinatorial regulation of red blood cell production
.
Mol Biosyst.
2013
;
9
(
2
):
234
-
245
.
18.
Endele
M
,
Etzrodt
M
,
Schroeder
T.
Instruction of hematopoietic lineage choice by cytokine signaling
.
Exp Cell Res.
2014
;
329
(
2
):
207
-
213
.
19.
Barberis
M
,
Helikar
T
,
Verbruggen
P.
Simulation of stimulation: cytokine dosage and cell cycle crosstalk driving timing-dependent T cell differentiation
.
Front Physiol.
2018
;
9
:
879
.
20.
Rieger
MA
,
Schroeder
T.
Analyzing cell fate control by cytokines through continuous single cell biochemistry
.
J Cell Biochem.
2009
;
108
(
2
):
343
-
352
.
21.
Kellogg
RA
,
Tay
S.
Noise facilitates transcriptional control under dynamic inputs
.
Cell.
2015
;
160
(
3
):
381
-
392
.
22.
Ryu
H
,
Chung
M
,
Dobrzyński
M
, et al
.
Frequency modulation of ERK activation dynamics rewires cell fate
.
Mol Syst Biol.
2015
;
11
(
11
):
838
.
23.
Purvis
JE
,
Lahav
G.
Encoding and decoding cellular information through signaling dynamics
.
Cell.
2013
;
152
(
5
):
945
-
956
.
24.
Marshall
CJ.
Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation
.
Cell.
1995
;
80
(
2
):
179
-
185
.
25.
Endele
M
,
Schroeder
T.
Molecular live cell bioimaging in stem cell research
.
Ann N Y Acad Sci.
2012
;
1266
(
1
):
18
-
27
.
26.
Loeffler
D
,
Wehling
A
,
Schneiter
F
, et al
.
Asymmetric lysosome inheritance predicts activation of haematopoietic stem cells [published correction appears in Nature. 573;E5]
.
Nature.
2019
;
573
(
7774
):
426
-
429
.
27.
Loeffler
D
,
Schroeder
T.
Understanding cell fate control by continuous single-cell quantification
.
Blood.
2019
;
133
(
13
):
1406
-
1414
.
28.
Hoppe
PS
,
Schwarzfischer
M
,
Loeffler
D
, et al
.
Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios
.
Nature.
2016
;
535
(
7611
):
299
-
302
.
29.
Regot
S
,
Hughey
JJ
,
Bajar
BT
,
Carrasco
S
,
Covert
MW.
High-sensitivity measurements of multiple kinase activities in live single cells
.
Cell.
2014
;
157
(
7
):
1724
-
1734
.
30.
Kudo
T
,
Jeknić
S
,
Macklin
DN
, et al
.
Live-cell measurements of kinase activity in single cells using translocation reporters
.
Nat Protoc.
2018
;
13
(
1
):
155
-
169
.
31.
Lahav
G
,
Rosenfeld
N
,
Sigal
A
, et al
.
Dynamics of the p53-Mdm2 feedback loop in individual cells
.
Nat Genet.
2004
;
36
(
2
):
147
-
150
.
32.
Tay
S
,
Hughey
JJ
,
Lee
TK
,
Lipniacki
T
,
Quake
SR
,
Covert
MW.
Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing
.
Nature.
2010
;
466
(
7303
):
267
-
271
.
33.
Tyas
L
,
Brophy
VA
,
Pope
A
,
Rivett
AJ
,
Tavaré
JM.
Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer
.
EMBO Rep.
2000
;
1
(
3
):
266
-
270
.
34.
Blum
Y
,
Mikelson
J
,
Dobrzyński
M
, et al
.
Temporal perturbation of ERK dynamics reveals network architecture of FGF2/MAPK signaling
.
Mol Syst Biol.
2019
;
15
(
11
):
e8947
.
35.
Santos
SDM
,
Verveer
PJ
,
Bastiaens
PIH.
Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate
.
Nat Cell Biol.
2007
;
9
(
3
):
324
-
330
.
36.
Martin
EW
,
Pacholewska
A
,
Patel
H
,
Dashora
H
,
Sung
MH.
Integrative analysis suggests cell type-specific decoding of NF-κB dynamics
.
Sci Signal.
2020
;
13
(
620
):
eaax7195
.
37.
Cheung
AMS
,
Nguyen
LV
,
Carles
A
, et al
.
Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice
.
Blood.
2013
;
122
(
18
):
3129
-
3137
.
38.
Knapp
DJHF
,
Hammond
CA
,
Hui
T
, et al
.
Single-cell analysis identifies a CD33+ subset of human cord blood cells with high regenerative potential
.
Nat Cell Biol.
2018
;
20
(
6
):
710
-
720
.
39.
Schroeder
T.
Tracking hematopoiesis at the single cell level
.
Ann N Y Acad Sci.
2005
;
1044
(
1
):
201
-
209
.
40.
Etzrodt
M
,
Endele
M
,
Schroeder
T.
Quantitative single-cell approaches to stem cell research
.
Cell Stem Cell.
2014
;
15
(
5
):
546
-
558
.
41.
Hoppe
PS
,
Coutu
DL
,
Schroeder
T.
Single-cell technologies sharpen up mammalian stem cell research
.
Nat Cell Biol.
2014
;
16
(
10
):
919
-
927
.
42.
Dettinger
P
,
Wang
W
,
Ahmed
N
, et al
.
An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation
.
Lab Chip.
2020
;
20
(
22
):
4246
-
4254
.
43.
Csaszar
E
,
Kirouac
DC
,
Yu
M
, et al
.
Rapid expansion of human hematopoietic stem cells by automated control of inhibitory feedback signaling
.
Cell Stem Cell.
2012
;
10
(
2
):
218
-
229
.
44.
Fares
I
,
Chagraoui
J
,
Gareau
Y
, et al
.
Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal
.
Science
2014
;
345
(
6203
):
1509
-
1512
.
45.
Knapp
DJHF
,
Hammond
CA
,
Miller
PH
, et al
.
Dissociation of survival, proliferation, and state control in human hematopoietic stem cells
.
Stem Cell Reports.
2017
;
8
(
1
):
152
-
162
.
46.
Lam
AJ
,
St-Pierre
F
,
Gong
Y
, et al
.
Improving FRET dynamic range with bright green and red fluorescent proteins
.
Nat Methods.
2012
;
9
(
10
):
1005
-
1012
.
47.
Koushik
SV
,
Chen
H
,
Thaler
C
,
Puhl
HL
III
,
Vogel
SS.
Cerulean, venus, and venusY67C FRET reference standards
.
Biophys J.
2006
;
91
(
12
):
L99
-
L101
.
48.
Okita
C
,
Sato
M
,
Schroeder
T.
Generation of optimized yellow and red fluorescent proteins with distinct subcellular localization
.
Biotechniques.
2004
;
36
(
3
):
418
-
422, 424
.
49.
Kellogg
RA
,
Gómez-Sjöberg
R
,
Leyrat
AA
,
Tay
S.
High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics
.
Nat Protoc.
2014
;
9
(
7
):
1713
-
1726
.
50.
Loeffler
D
,
Wang
W
,
Hopf
A
, et al
.
Mouse and human HSPC immobilization in liquid culture by CD43- or CD44-antibody coating
.
Blood.
2018
;
131
(
13
):
1425
-
1429
.
51.
Hilsenbeck
O
,
Schwarzfischer
M
,
Skylaki
S
, et al
.
Software tools for single-cell tracking and quantification of cellular and molecular properties
.
Nat Biotechnol.
2016
;
34
(
7
):
703
-
706
.
52.
Hilsenbeck
O
,
Schwarzfischer
M
,
Loeffler
D
, et al
.
fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy
.
Bioinformatics.
2017
;
33
(
13
):
2020
-
2028
.
53.
Dobrzyński
M
,
Jacques
M-A
,
Pertz
O.
Mining single-cell time-series datasets with Time Course Inspector
.
Bioinformatics.
2020
;
36
(
6
):
1968
-
1969
.
54.
Notta
F
,
Doulatov
S
,
Laurenti
E
, et al
.
Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
.
Science
2011
;
333
(
6039
):
218
-
221
.
55.
Nonami
A
,
Kato
R
,
Taniguchi
K
, et al
.
Spred-1 negatively regulates interleukin-3-mediated ERK/mitogen-activated protein (MAP) kinase activation in hematopoietic cells
.
J Biol Chem.
2004
;
279
(
50
):
52543
-
52551
.
56.
Kamata
T
,
Pritchard
CA
,
Leavitt
AD.
Raf-1 is not required for megakaryocytopoiesis or TPO-induced ERK phosphorylation
.
Blood.
2004
;
103
(
7
):
2568
-
2570
.
57.
Kent
D
,
Copley
M
,
Benz
C
,
Dykstra
B
,
Bowie
M
,
Eaves
C.
Regulation of hematopoietic stem cells by the steel factor/KIT signaling pathway
.
Clin Cancer Res.
2008
;
14
(
7
):
1926
-
1930
.
58.
Maeda
K
,
Malykhin
A
,
Teague-Weber
BN
,
Sun
XH
,
Farris
AD
,
Coggeshall
KM.
Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals
.
Blood.
2009
;
113
(
19
):
4534
-
4540
.
59.
Kamezaki
K
,
Shimoda
K
,
Numata
A
, et al
.
Roles of Stat3 and ERK in G-CSF signaling
.
Stem Cells.
2005
;
23
(
2
):
252
-
263
.
60.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science
2016
;
351
(
6269
):
aab2116
.
61.
Eilken
HM
,
Nishikawa
S
,
Schroeder
T.
Continuous single-cell imaging of blood generation from haemogenic endothelium
.
Nature.
2009
;
457
(
7231
):
896
-
900
.
62.
Boitano
AE
,
Wang
J
,
Romeo
R
, et al
.
Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
.
Science
2010
;
329
(
5997
):
1345
-
1348
.
63.
Wagner
JE
Jr
,
Brunstein
CG
,
Boitano
AE
, et al
.
Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft
.
Cell Stem Cell.
2016
;
18
(
1
):
144
-
155
.
64.
Cohen
S
,
Roy
J
,
Lachance
S
, et al
.
Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1-2 safety and feasibility study
.
Lancet Haematol.
2020
;
7
(
2
):
e134
-
e145
.
65.
Naldini
L.
Gene therapy returns to centre stage
.
Nature.
2015
;
526
(
7573
):
351
-
360
.
66.
Aiuti
A
,
Biasco
L
,
Scaramuzza
S
, et al
.
Lentiviral hematopoietic stem cell gene therapy in patients with wiskott-aldrich syndrome
.
Science
2013
;
341
(
6148
):
1233151
.
67.
Genovese
P
,
Schiroli
G
,
Escobar
G
, et al
.
Targeted genome editing in human repopulating haematopoietic stem cells
.
Nature.
2014
;
510
(
7504
):
235
-
240
.
68.
Petzer
AL
,
Zandstra
PW
,
Piret
JM
,
Eaves
CJ.
Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: novel responses to Flt3-ligand and thrombopoietin
.
J Exp Med.
1996
;
183
(
6
):
2551
-
2558
.
69.
Brandt
R
,
Sell
T
,
Lüthen
M
, et al
.
Cell type-dependent differential activation of ERK by oncogenic KRAS in colon cancer and intestinal epithelium
.
Nat Commun.
2019
;
10
(
1
):
2919
.
70.
Schroeder
T.
Hematopoietic stem cell heterogeneity: subtypes, not unpredictable behavior
.
Cell Stem Cell.
2010
;
6
(
3
):
203
-
207
.
71.
Yu
VWC
,
Yusuf
RZ
,
Oki
T
, et al
.
Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells [published correction appears in Cell. 2017;168(5):944–945]
.
Cell.
2016
;
167
(
5
):
1310
-
1322.e17
.
72.
Farlik
M
,
Halbritter
F
,
Müller
F
, et al
.
DNA methylation dynamics of human hematopoietic stem cell differentiation
.
Cell Stem Cell.
2016
;
19
(
6
):
808
-
822
.
73.
Bhalla
US.
Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways
.
Biophys J.
2004
;
87
(
2
):
733
-
744
.
74.
Fritsche-Guenther
R
,
Witzel
F
,
Sieber
A
, et al
.
Strong negative feedback from Erk to Raf confers robustness to MAPK signalling
.
Mol Syst Biol.
2011
;
7
(
1
):
489
.
75.
Sigal
A
,
Milo
R
,
Cohen
A
, et al
.
Variability and memory of protein levels in human cells
.
Nature.
2006
;
444
(
7119
):
643
-
646
.
76.
Chen
JY
,
Lin
JR
,
Cimprich
KA
,
Meyer
T.
A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision
.
Mol Cell.
2012
;
45
(
2
):
196
-
209
.
77.
Wollman
R.
Robustness, accuracy, and cell state heterogeneity in biological systems
.
Curr Opin Syst Biol.
2018
;
8
:
46
-
50
.
78.
Selimkhanov
J
,
Taylor
B
,
Yao
J
, et al
.
Accurate information transmission through dynamic biochemical signaling networks
.
Science
2014
;
346
(
6215
):
1370
-
1373
.
79.
Paszek
P
,
Ryan
S
,
Ashall
L
, et al
.
Population robustness arising from cellular heterogeneity
.
Proc Natl Acad Sci U S A.
2010
;
107
(
25
):
11644
-
11649
.
80.
Suderman
R
,
Bachman
JA
,
Smith
A
,
Sorger
PK
,
Deeds
EJ.
Fundamental trade-offs between information flow in single cells and cellular populations
.
Proc Natl Acad Sci U S A.
2017
;
114
(
22
):
5755
-
5760
.
81.
Behar
M
,
Barken
D
,
Werner
SL
,
Hoffmann
A.
The dynamics of signaling as a pharmacological target
.
Cell.
2013
;
155
(
2
):
448
-
461
.
82.
Francisco
DC
,
Peddi
P
,
Hair
JM
, et al
.
Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells
.
Free Radic Biol Med.
2008
;
44
(
4
):
558
-
569
.
83.
Bugaj
LJ
,
Sabnis
AJ
,
Mitchell
A
, et al
.
Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway
.
Science
2018
;
361
(
6405
):
eaao3048
.
84.
Ding
Q
,
Xia
W
,
Liu
JC
, et al
.
Erk associates with and primes GSK-3β for its inactivation resulting in upregulation of β-catenin
.
Mol Cell.
2005
;
19
(
2
):
159
-
170
.
85.
Baumgartner
C
,
Toifl
S
,
Farlik
M
, et al
.
An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion
.
Cell Stem Cell.
2018
;
22
(
6
):
879
-
892.e6
.
86.
Goglia
AG
,
Wilson
MZ
,
Jena
SG
, et al
.
A live-cell screen for altered Erk dynamics reveals principles of proliferative control
.
Cell Syst.
2020
;
10
(
3
):
240
-
253.e6
.
87.
Klinger
B
,
Sieber
A
,
Fritsche-Guenther
R
, et al
.
Network quantification of EGFR signaling unveils potential for targeted combination therapy
.
Mol Syst Biol.
2013
;
9
(
1
):
673
.
You do not currently have access to this content.

Sign in via your Institution

Sign In