Abstract

In chronic lymphocytic leukemia (CLL), increasing knowledge of the biology of the tumor cells has led to transformative improvements in our capacity to assess and treat patients. The dependence of tumor cells on surface immunoglobulin receptor signaling, survival pathways, and accessory cells within the microenvironment has led to a successful double-barreled attack with designer drugs. Studies have revealed that CLL should be classified based on the mutational status of the expressed IGHV sequences into 2 diseases, either unmutated (U) or mutated (M) CLL, each with a distinctive cellular origin, biology, epigenetics/genetics, and clinical behavior. The origin of U-CLL lies among the natural antibody repertoire, and dominance of IGHV1-69 reveals a superantigenic driver. In both U-CLL and M-CLL, a calibrated stimulation of tumor cells by self-antigens apparently generates a dynamic reiterative cycle as cells, protected from apoptosis, transit between blood and tissue sites. But there are differences in outcome, with the balance between proliferation and anergy favoring anergy in M-CLL. Responses are modulated by an array of microenvironmental interactions. Availability of T-cell help is a likely determinant of cell fate, the dependency on which varies between U-CLL and M-CLL, reflecting the different cells of origin, and affecting clinical behavior. Despite such advances, cell-escape strategies, Richter transformation, and immunosuppression remain as challenges, which only may be met by continued research into the biology of CLL.

REFERENCES

1.
Seifert
M
,
Sellmann
L
,
Bloehdorn
J
, et al
.
Cellular origin and pathophysiology of chronic lymphocytic leukemia
.
J Exp Med.
2012
;
209
(
12
):
2183
-
2198
.
2.
Landau
DA
,
Tausch
E
,
Taylor-Weiner
AN
, et al
.
Mutations driving CLL and their evolution in progression and relapse
.
Nature.
2015
;
526
(
7574
):
525
-
530
.
3.
Hamblin
TJ
,
Davis
Z
,
Gardiner
A
,
Oscier
DG
,
Stevenson
FK.
Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia
.
Blood.
1999
;
94
(
6
):
1848
-
1854
.
4.
Damle
RN
,
Wasil
T
,
Fais
F
, et al
.
Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia
.
Blood.
1999
;
94
(
6
):
1840
-
1847
.
5.
Jain
N
,
Keating
M
,
Thompson
P
, et al
.
Ibrutinib and venetoclax for first-line treatment of CLL
.
N Engl J Med.
2019
;
380
(
22
):
2095
-
2103
.
6.
Hillmen
P
,
Rawstron
AC
,
Brock
K
, et al
.
Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia: the CLARITY study
.
J Clin Oncol.
2019
;
37
(
30
):
2722
-
2729
.
7.
Macallan
DC
,
Wallace
DL
,
Zhang
Y
, et al
.
B-cell kinetics in humans: rapid turnover of peripheral blood memory cells
.
Blood.
2005
;
105
(
9
):
3633
-
3640
.
8.
Adachi
M
,
Tefferi
A
,
Greipp
PR
,
Kipps
TJ
,
Tsujimoto
Y.
Preferential linkage of bcl-2 to immunoglobulin light chain gene in chronic lymphocytic leukemia
.
J Exp Med.
1990
;
171
(
2
):
559
-
564
.
9.
Dyer
MJ
,
Zani
VJ
,
Lu
WZ
, et al
.
BCL2 translocations in leukemias of mature B cells
.
Blood.
1994
;
83
(
12
):
3682
-
3688
.
10.
Calin
GA
,
Dumitru
CD
,
Shimizu
M
, et al
.
Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia
.
Proc Natl Acad Sci USA.
2002
;
99
(
24
):
15524
-
15529
.
11.
Cimmino
A
,
Calin
GA
,
Fabbri
M
, et al
.
miR-15 and miR-16 induce apoptosis by targeting BCL2
.
Proc Natl Acad Sci USA.
2005
;
102
(
39
):
13944
-
13949
.
12.
Tam
CS
,
Seymour
JF
,
Roberts
AW.
Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia
.
Semin Oncol.
2016
;
43
(
2
):
274
-
279
.
13.
Del Gaizo Moore
V
,
Brown
JR
,
Certo
M
,
Love
TM
,
Novina
CD
,
Letai
A.
Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737
.
J Clin Invest.
2007
;
117
(
1
):
112
-
121
.
14.
Lam
KP
,
Kühn
R
,
Rajewsky
K.
In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death
.
Cell.
1997
;
90
(
6
):
1073
-
1083
.
15.
Herishanu
Y
,
Pérez-Galán
P
,
Liu
D
, et al
.
The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia
.
Blood.
2011
;
117
(
2
):
563
-
574
.
16.
Mockridge
CI
,
Potter
KN
,
Wheatley
I
,
Neville
LA
,
Packham
G
,
Stevenson
FK.
Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status
.
Blood.
2007
;
109
(
10
):
4424
-
4431
.
17.
Dühren-von Minden
M
,
Übelhart
R
,
Schneider
D
, et al
.
Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling
.
Nature.
2012
;
489
(
7415
):
309
-
312
.
18.
Chen
Z
,
Shojaee
S
,
Buchner
M
, et al
.
Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia
.
Nature.
2015
;
521
(
7552
):
357
-
361
.
19.
Marches
R
,
Racila
E
,
Tucker
TF
, et al
.
Tumour dormancy and cell signalling--III: Role of hypercrosslinking of IgM and CD40 on the induction of cell cycle arrest and apoptosis in B lymphoma cells
.
Ther Immunol.
1995
;
2
(
3
):
125
-
136
.
20.
Savelyeva
N
,
King
CA
,
Vitetta
ES
,
Stevenson
FK.
Inhibition of a vaccine-induced anti-tumor B cell response by soluble protein antigen in the absence of continuing T cell help
.
Proc Natl Acad Sci USA.
2005
;
102
(
31
):
10987
-
10992
.
21.
Yun
TJ
,
Bevan
MJ.
The Goldilocks conditions applied to T cell development
.
Nat Immunol.
2001
;
2
(
1
):
13
-
14
.
22.
Rudensky
AY
,
Chervonsky
AV.
A narrow circle of mutual friends
.
Immunity.
2011
;
34
(
5
):
697
-
699
.
23.
Tangye
SG
,
Bier
J
,
Lau
A
,
Nguyen
T
,
Uzel
G
,
Deenick
EK.
Immune dysregulation and disease pathogenesis due to activating mutations in PIK3CD: the Goldilocks’ effect
.
J Clin Immunol.
2019
;
39
(
2
):
148
-
158
.
24.
Nimmerjahn
F
,
Ravetch
JV.
Fcgamma receptors as regulators of immune responses
.
Nat Rev Immunol.
2008
;
8
(
1
):
34
-
47
.
25.
Dighiero
G
,
Kipps
T
,
Schroeder
HW
, et al
.
What is the CLL B-lymphocyte?
Leuk Lymphoma.
1996
;
22
(
sup2 Suppl 2
):
13
-
39
.
26.
Cook
GP
,
Tomlinson
IM
,
Walter
G
, et al
.
A map of the human immunoglobulin VH locus completed by analysis of the telomeric region of chromosome 14q
.
Nat Genet.
1994
;
7
(
2
):
162
-
168
.
27.
Matsuda
F
,
Ishii
K
,
Bourvagnet
P
, et al
.
The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus
.
J Exp Med.
1998
;
188
(
11
):
2151
-
2162
.
28.
Kipps
TJ
,
Tomhave
E
,
Pratt
LF
,
Duffy
S
,
Chen
PP
,
Carson
DA.
Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia
.
Proc Natl Acad Sci USA.
1989
;
86
(
15
):
5913
-
5917
.
29.
Fais
F
,
Ghiotto
F
,
Hashimoto
S
, et al
.
Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors
.
J Clin Invest.
1998
;
102
(
8
):
1515
-
1525
.
30.
Stevenson
FK
,
Krysov
S
,
Davies
AJ
,
Steele
AJ
,
Packham
G.
B-cell receptor signaling in chronic lymphocytic leukemia
.
Blood.
2011
;
118
(
16
):
4313
-
4320
.
31.
Jain
P
,
Nogueras González
GM
,
Kanagal-Shamanna
R
, et al
.
The absolute percent deviation of IGHV mutation rather than a 98% cut-off predicts survival of chronic lymphocytic leukaemia patients treated with fludarabine, cyclophosphamide and rituximab
.
Br J Haematol.
2018
;
180
(
1
):
33
-
40
.
32.
Thorsélius
M
,
Kröber
A
,
Murray
F
, et al
.
Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status
.
Blood.
2006
;
107
(
7
):
2889
-
2894
.
33.
Kipps
TJ
,
Stevenson
FK
,
Wu
CJ
, et al
.
Chronic lymphocytic leukaemia
.
Nat Rev Dis Primers.
2017
;
3
(
1
):
17008
.
34.
Martin
T
,
Duffy
SF
,
Carson
DA
,
Kipps
TJ.
Evidence for somatic selection of natural autoantibodies
.
J Exp Med.
1992
;
175
(
4
):
983
-
991
.
35.
Widhopf
GF
II
,
Rassenti
LZ
,
Toy
TL
,
Gribben
JG
,
Wierda
WG
,
Kipps
TJ.
Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins
.
Blood.
2004
;
104
(
8
):
2499
-
2504
.
36.
Potter
KN
,
Mockridge
CI
,
Neville
L
, et al
.
Structural and functional features of the B-cell receptor in IgG-positive chronic lymphocytic leukemia
.
Clin Cancer Res.
2006
;
12
(
6
):
1672
-
1679
.
37.
Damle
RN
,
Batliwalla
FM
,
Ghiotto
F
, et al
.
Telomere length and telomerase activity delineate distinctive replicative features of the B-CLL subgroups defined by immunoglobulin V gene mutations
.
Blood.
2004
;
103
(
2
):
375
-
382
.
38.
Kasar
S
,
Kim
J
,
Improgo
R
, et al
.
Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution
.
Nat Commun.
2015
;
6
(
1
):
8866
.
39.
Duty
JA
,
Szodoray
P
,
Zheng
NY
, et al
.
Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors
.
J Exp Med.
2009
;
206
(
1
):
139
-
151
.
40.
Oakes
CC
,
Seifert
M
,
Assenov
Y
, et al
.
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia
.
Nat Genet.
2016
;
48
(
3
):
253
-
264
.
41.
Oakes
CC
,
Claus
R
,
Gu
L
, et al
.
Evolution of DNA methylation is linked to genetic aberrations in chronic lymphocytic leukemia
.
Cancer Discov.
2014
;
4
(
3
):
348
-
361
.
42.
Beekman
R
,
Chapaprieta
V
,
Russiñol
N
, et al
.
The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia
.
Nat Med.
2018
;
24
(
6
):
868
-
880
.
43.
Forconi
F
,
Potter
KN
,
Wheatley
I
, et al
.
The normal IGHV1-69-derived B-cell repertoire contains stereotypic patterns characteristic of unmutated CLL
.
Blood.
2010
;
115
(
1
):
71
-
77
.
44.
Johnson
TA
,
Rassenti
LZ
,
Kipps
TJ.
Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features
.
J Immunol.
1997
;
158
(
1
):
235
-
246
.
45.
Widhopf
GF
II
,
Kipps
TJ.
Normal B cells express 51p1-encoded Ig heavy chains that are distinct from those expressed by chronic lymphocytic leukemia B cells
.
J Immunol.
2001
;
166
(
1
):
95
-
102
.
46.
Steininger
C
,
Widhopf
GF
II
,
Ghia
EM
, et al
.
Recombinant antibodies encoded by IGHV1-69 react with pUL32, a phosphoprotein of cytomegalovirus and B-cell superantigen
.
Blood.
2012
;
119
(
10
):
2293
-
2301
.
47.
Hwang
KK
,
Trama
AM
,
Kozink
DM
, et al
.
IGHV1-69 B cell chronic lymphocytic leukemia antibodies cross-react with HIV-1 and hepatitis C virus antigens as well as intestinal commensal bacteria
.
PLoS One.
2014
;
9
(
3
):
e90725
.
48.
Chu
CC
,
Catera
R
,
Hatzi
K
, et al
.
Chronic lymphocytic leukemia antibodies with a common stereotypic rearrangement recognize nonmuscle myosin heavy chain IIA
.
Blood.
2008
;
112
(
13
):
5122
-
5129
.
49.
Que
X
,
Widhopf
GF
II
,
Amir
S
, et al
.
IGHV1-69-encoded antibodies expressed in chronic lymphocytic leukemia react with malondialdehyde-acetaldehyde adduct, an immunodominant oxidation-specific epitope
.
PLoS One.
2013
;
8
(
6
):
e65203
.
50.
Colombo
M
,
Bagnara
D
,
Reverberi
D
, et al
.
Tracing CLL-biased stereotyped immunoglobulin gene rearrangements in normal B cell subsets using a high-throughput immunogenetic approach
.
Mol Med.
2020
;
26
(
1
):
25
.
51.
Llorente
M
,
Sánchez-Palomino
S
,
Mañes
S
, et al
.
Natural human antibodies retrieved by phage display libraries from healthy donors: polyreactivity and recognition of human immunodeficiency virus type 1gp120 epitopes
.
Scand J Immunol.
1999
;
50
(
3
):
270
-
279
.
52.
Maddur
MS
,
Lacroix-Desmazes
S
,
Dimitrov
JD
,
Kazatchkine
MD
,
Bayry
J
,
Kaveri
SV.
Natural Antibodies: from First-Line Defense Against Pathogens to Perpetual Immune Homeostasis
.
Clin Rev Allergy Immunol.
2020
;
58
(
2
):
213
-
228
.
53.
Tucci
FA
,
Kitanovski
S
,
Johansson
P
, et al
.
Biased IGH VDJ gene repertoire and clonal expansions in B cells of chronically hepatitis C virus-infected individuals
.
Blood.
2018
;
131
(
5
):
546
-
557
.
54.
Gasparotto
D
,
De Re
V
,
Boiocchi
M.
Hepatitis C virus, B-cell proliferation and lymphomas
.
Leuk Lymphoma.
2002
;
43
(
4
):
747
-
751
.
55.
Borche
L
,
Lim
A
,
Binet
JL
,
Dighiero
G.
Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies
.
Blood.
1990
;
76
(
3
):
562
-
569
.
56.
Gibson
KL
,
Wu
YC
,
Barnett
Y
, et al
.
B-cell diversity decreases in old age and is correlated with poor health status
.
Aging Cell.
2009
;
8
(
1
):
18
-
25
.
57.
Henriques
A
,
Rodríguez-Caballero
A
,
Nieto
WG
, et al
.
Combined patterns of IGHV repertoire and cytogenetic/molecular alterations in monoclonal B lymphocytosis versus chronic lymphocytic leukemia
.
PLoS One.
2013
;
8
(
7
):
e67751
.
58.
Dagklis
A
,
Fazi
C
,
Sala
C
, et al
.
The immunoglobulin gene repertoire of low-count chronic lymphocytic leukemia (CLL)-like monoclonal B lymphocytosis is different from CLL: diagnostic implications for clinical monitoring
.
Blood.
2009
;
114
(
1
):
26
-
32
.
59.
Strati
P
,
Shanafelt
TD.
Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: diagnosis, natural history, and risk stratification
.
Blood.
2015
;
126
(
4
):
454
-
462
.
60.
Rossi
D
,
Sozzi
E
,
Puma
A
, et al
.
The prognosis of clinical monoclonal B cell lymphocytosis differs from prognosis of Rai 0 chronic lymphocytic leukaemia and is recapitulated by biological risk factors
.
Br J Haematol.
2009
;
146
(
1
):
64
-
75
.
61.
Hallek
M.
Signaling the end of chronic lymphocytic leukemia: new frontline treatment strategies
.
Blood.
2013
;
122
(
23
):
3723
-
3734
.
62.
Coelho
V
,
Krysov
S
,
Steele
A
, et al
.
Identification in CLL of circulating intraclonal subgroups with varying B-cell receptor expression and function
.
Blood.
2013
;
122
(
15
):
2664
-
2672
.
63.
Yarkoni
Y
,
Getahun
A
,
Cambier
JC.
Molecular underpinning of B-cell anergy
.
Immunol Rev.
2010
;
237
(
1
):
249
-
263
.
64.
Apollonio
B
,
Scielzo
C
,
Bertilaccio
MT
, et al
.
Targeting B-cell anergy in chronic lymphocytic leukemia
.
Blood.
2013
;
121
:
3879
-
3888
.
65.
D’Avola
A
,
Drennan
S
,
Tracy
I
, et al
.
Surface IgM expression and function are associated with clinical behavior, genetic abnormalities, and DNA methylation in CLL
.
Blood.
2016
;
128
(
6
):
816
-
826
.
66.
Drennan
S
,
Chiodin
G
,
D’Avola
A
, et al
.
Ibrutinib therapy releases leukemic surface IgM from antigen drive in chronic lymphocytic leukemia patients
.
Clin Cancer Res.
2019
;
25
(
8
):
2503
-
2512
.
67.
de Rooij
MF
,
Kuil
A
,
Geest
CR
, et al
.
The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia
.
Blood.
2012
;
119
(
11
):
2590
-
2594
.
68.
Wodarz
D
,
Garg
N
,
Komarova
NL
, et al
.
Kinetics of CLL cells in tissues and blood during therapy with the BTK inhibitor ibrutinib
.
Blood.
2014
;
123
(
26
):
4132
-
4135
.
69.
Krysov
S
,
Potter
KN
,
Mockridge
CI
, et al
.
Surface IgM of CLL cells displays unusual glycans indicative of engagement of antigen in vivo
.
Blood.
2010
;
115
(
21
):
4198
-
4205
.
70.
Pavlasova
G
,
Borsky
M
,
Seda
V
, et al
.
Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis
.
Blood.
2016
;
128
(
12
):
1609
-
1613
.
71.
Aguilar-Hernandez
MM
,
Blunt
MD
,
Dobson
R
, et al
.
IL-4 enhances expression and function of surface IgM in CLL cells
.
Blood.
2016
;
127
(
24
):
3015
-
3025
.
72.
Woyach
JA
,
Furman
RR
,
Liu
TM
, et al
.
Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib
.
N Engl J Med.
2014
;
370
(
24
):
2286
-
2294
.
73.
Liu
TM
,
Woyach
JA
,
Zhong
Y
, et al
.
Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation
.
Blood.
2015
;
126
(
1
):
61
-
68
.
74.
Burger
JA
,
Landau
DA
,
Taylor-Weiner
A
, et al
.
Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition
.
Nat Commun.
2016
;
7
(
1
):
11589
.
75.
Wist
M
,
Meier
L
,
Gutman
O
, et al
.
Noncatalytic Bruton’s tyrosine kinase activates PLCγ2 variants mediating ibrutinib resistance in human chronic lymphocytic leukemia cells
.
J Biol Chem.
2020
;
295
(
17
):
5717
-
5736
.
76.
Lafouresse
F
,
Bellard
E
,
Laurent
C
, et al
.
L-selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo
.
Blood.
2015
;
126
(
11
):
1336
-
1345
.
77.
Cohen
JA
,
Bomben
R
,
Pozzo
F
, et al
.
An updated perspective on current prognostic and predictive biomarkers in chronic lymphocytic leukemia in the context of chemoimmunotherapy and novel targeted therapy
.
Cancers (Basel).
2020
;
12
(
4
):
12
.
78.
Majid
A
,
Lin
TT
,
Best
G
, et al
.
CD49d is an independent prognostic marker that is associated with CXCR4 expression in CLL
.
Leuk Res.
2011
;
35
(
6
):
750
-
756
.
79.
Capitani
N
,
Patrussi
L
,
Trentin
L
, et al
.
S1P1 expression is controlled by the pro-oxidant activity of p66Shc and is impaired in B-CLL patients with unfavorable prognosis
.
Blood.
2012
;
120
(
22
):
4391
-
4399
.
80.
Kipps
TJ
,
Choi
MY.
Targeted therapy in chronic lymphocytic leukemia
.
Cancer J.
2019
;
25
(
6
):
378
-
385
.
81.
Packham
G
,
Krysov
S
,
Allen
A
, et al
.
The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy
.
Haematologica.
2014
;
99
(
7
):
1138
-
1148
.
82.
Endo
T
,
Nishio
M
,
Enzler
T
, et al
.
BAFF and APRIL support chronic lymphocytic leukemia B-cell survival through activation of the canonical NF-kappaB pathway
.
Blood.
2007
;
109
(
2
):
703
-
710
.
83.
Cui
B
,
Chen
L
,
Zhang
S
, et al
.
MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia
.
Blood.
2014
;
124
(
4
):
546
-
554
.
84.
Burger
JA
,
Tsukada
N
,
Burger
M
,
Zvaifler
NJ
,
Dell’Aquila
M
,
Kipps
TJ.
Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1
.
Blood.
2000
;
96
(
8
):
2655
-
2663
.
85.
Lu
D
,
Zhao
Y
,
Tawatao
R
, et al
.
Activation of the Wnt signaling pathway in chronic lymphocytic leukemia
.
Proc Natl Acad Sci USA.
2004
;
101
(
9
):
3118
-
3123
.
86.
Yu
J
,
Chen
L
,
Cui
B
, et al
.
Wnt5a induces ROR1/ROR2 heterooligomerization to enhance leukemia chemotaxis and proliferation
.
J Clin Invest.
2016
;
126
(
2
):
585
-
598
.
87.
Chen
Y
,
Chen
L
,
Yu
J
, et al
.
Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia
.
Blood.
2019
;
134
(
13
):
1084
-
1094
.
88.
Hasan
MK
,
Yu
J
,
Chen
L
, et al
.
Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells
.
Leukemia.
2017
;
31
(
12
):
2615
-
2622
.
89.
Cui
B
,
Ghia
EM
,
Chen
L
, et al
.
High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia
.
Blood.
2016
;
128
(
25
):
2931
-
2940
.
90.
Drennan
S
,
D’Avola
A
,
Gao
Y
, et al
.
IL-10 production by CLL cells is enhanced in the anergic IGHV mutated subset and associates with reduced DNA methylation of the IL10 locus
.
Leukemia.
2017
;
31
(
8
):
1686
-
1694
.
91.
Mauri
C
,
Bosma
A.
Immune regulatory function of B cells
.
Annu Rev Immunol.
2012
;
30
(
1
):
221
-
241
.
92.
DiLillo
DJ
,
Weinberg
JB
,
Yoshizaki
A
, et al
.
Chronic lymphocytic leukemia and regulatory B cells share IL-10 competence and immunosuppressive function
.
Leukemia.
2013
;
27
(
1
):
170
-
182
.
93.
Forconi
F
,
Moss
P.
Perturbation of the normal immune system in patients with CLL
.
Blood.
2015
;
126
(
5
):
573
-
581
.
94.
Ghia
EM
,
Rassenti
LZ
,
Neuberg
DS
, et al;
HALT Pan-Leukemia Gene Panel Consortium
.
Activation of hedgehog signaling associates with early disease progression in chronic lymphocytic leukemia
.
Blood.
2019
;
133
(
25
):
2651
-
2663
.
95.
Seke Etet
PF
,
Vecchio
L
,
Nwabo Kamdje
AH.
Interactions between bone marrow stromal microenvironment and B-chronic lymphocytic leukemia cells: any role for Notch, Wnt and Hh signaling pathways?
Cell Signal.
2012
;
24
(
7
):
1433
-
1443
.
96.
Decker
S
,
Zirlik
K
,
Djebatchie
L
, et al
.
Trisomy 12 and elevated GLI1 and PTCH1 transcript levels are biomarkers for Hedgehog-inhibitor responsiveness in CLL
.
Blood.
2012
;
119
(
4
):
997
-
1007
.
97.
Houot
R
,
Soussain
C
,
Tilly
H
, et al
.
Inhibition of Hedgehog signaling for the treatment of lymphoma and CLL: a phase II study from the LYSA
.
Ann Oncol.
2016
;
27
(
7
):
1349
-
1350
.
98.
Burger
JA
,
Burger
M
,
Kipps
TJ.
Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells
.
Blood.
1999
;
94
(
11
):
3658
-
3667
.
99.
Calissano
C
,
Damle
RN
,
Marsilio
S
, et al
.
Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells
.
Mol Med.
2011
;
17
(
11-12
):
1374
-
1382
.
100.
Coulter
EM
,
Pepper
A
,
Mele
S
, et al
.
In vitro and in vivo evidence for uncoupling of B-cell receptor internalization and signaling in chronic lymphocytic leukemia
.
Haematologica.
2018
;
103
(
3
):
497
-
505
.
101.
Guo
B
,
Zhang
L
,
Chiorazzi
N
,
Rothstein
TL.
IL-4 rescues surface IgM expression in chronic lymphocytic leukemia
.
Blood.
2016
;
128
(
4
):
553
-
562
.
102.
Turner
JS
,
Benet
ZL
,
Grigorova
IL.
Signals 1, 2 and B cell fate or: Where, when and for how long?
Immunol Rev.
2020
;
296
(
1
):
9
-
23
.
103.
Hofland
T
,
de Weerdt
I
,
Endstra
S
, et al
.
Functional differences between EBV- and CMV-specific CD8+ T cells demonstrate heterogeneity of T cell dysfunction in CLL
.
HemaSphere.
2020
;
4
(
2
):
e337
.
104.
Virgin
HW
,
Wherry
EJ
,
Ahmed
R.
Redefining chronic viral infection
.
Cell.
2009
;
138
(
1
):
30
-
50
.
105.
Gold
MR
,
Reth
MG.
Antigen receptor function in the context of the nanoscale organization of the B cell membrane
.
Annu Rev Immunol.
2019
;
37
(
1
):
97
-
123
.
106.
Wasim
L
,
Buhari
FHM
,
Yoganathan
M
, et al
.
N-linked glycosylation regulates CD22 organization and function
.
Front Immunol.
2019
;
10
:
699
.
107.
Minici
C
,
Gounari
M
,
Übelhart
R
, et al
.
Distinct homotypic B-cell receptor interactions shape the outcome of chronic lymphocytic leukaemia
.
Nat Commun.
2017
;
8
(
1
):
15746
.
108.
Maity
PC
,
Bilal
M
,
Koning
MT
, et al
.
IGLV3-21*01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling
.
Proc Natl Acad Sci USA.
2020
;
117
(
8
):
4320
-
4327
.
109.
Klintman
J
,
Appleby
N
,
Stamatopoulos
B
, et al
.
Genomic and transcriptomic correlates of Richter’s transformation in chronic lymphocytic leukemia
.
Blood.
2021
;
137
(
20
):
2800
-
2816
.
You do not currently have access to this content.

Sign in via your Institution

Sign In